01吴新财毕业论文(7)

2025-11-10

系统的硬件设计

本系统在手动/自动控制下的运行过程如下:

(1) 手动控制:手动控制只在检查故障原因时才会用到,便于电机故障的检测与维修。单刀双掷开关SA打至1端时开启手动控制模式,此时可以通过开关分别控制三台水泵电机在工频下的运行和停止。SB1按下时由于KM2常闭触点接通电路使得KM1的线圈得电,KM1的常开触点闭合从而实现自锁功能,电机M1可以稳定的运行在工频下。只有当SB2按下时才会切断电路,KM1线圈失电,电机M1停止运行。同理,可以通过按下SB3、SB5启动电机M2、M3,通过按下SB4、SB6来使电机M2、M3停机。

(2)自动控制:在正常情况下变频恒压供水系统工作在自动状态下。单刀双掷开关SA打至2端时开启自动控制模式,自动控制的工作状况由PLC程序控制。Q0.0输出1#水泵工频运行信号,Q0.1输出1#水泵变频运行信号,当Q0.0输出1时,KM1线圈得电,1#水泵工频运行指示灯HL1点亮,同时KM1的常闭触点断开,实现KM1、KM2的电气互锁。当Q0.1输出1时,KM2线圈得电,1#水泵变频运行指示灯HL2点亮,同时KM2的常闭触点断开,实现KM2、KM1的电气互锁。同理,2#、3#水泵的控制原理也是如此。当Q1.1输出1时,水池水位上下限报警指示灯HL7点亮;当Q1.2输出1时,变频器故障报警指示灯HL8点亮;当Q1.3输出1时,白天供水模式指示灯HL9点亮;当Q1.4输出1时,报警电铃HA响起;当Q1.5输出1时,中间继电器KA的线圈得电,常开触点KA闭合使得变频器的频率复位;处于自动控制状态下,自动运行状态电源指示灯HL10一直点亮。

3.4 PLC的I/O端口分配及外围接线图

基于PLC的变频恒压供水系统设计的基本要求如下:

27

系统的硬件设计

(1) 由于白天和夜间小区用水量明显不同,本设计采用白天供水和夜间供水两种模式,两种模式下设定的给定水压值不同。白天,小区的用水量大,系统高恒压值运行;夜间,小区用水量小,系统低恒压值运行。

(2) 在用水量小的情况下,如果一台水泵连续运行时间超过3h,则要切换下一台水泵,即系统具有“倒泵功能”,避免某一台水泵工作时间过长。倒泵只用于系统只有一台变频泵长时间工作的情况下。

(3) 考虑节能和水泵寿命的因素,各水泵切换遵循先启先停、先停先启原则。

(4) 三台水泵在启动时要有软启动功能,对水泵的操作要有手动/自动控制功能,手动只在应急或检修时临时使用。

(5) 系统要有完善的报警功能。

根据以上控制要求统计控制系统的输入输出信号的名称、代码及地址编号如表3.2所示。

表3.2 输入输出点代码及地址编号

名 称 输入信号 供水模式信号(1-白天,0-夜间) 水池水位上下限信号 变频器报警信号 试灯按钮 压力变送器输出模拟量电压值 输出信1#泵工频运行接触器及指示灯 1#泵变频运行接触器及指示灯 2#泵工频运行接触器及指示灯 2#泵变频运行接触器及指示灯 代 码 SA1 SLHL SU SB7 Up KM1、HL1 KM2、HL2 KM3、HL3 KM4、HL4 地址编号 I0.0 I0.1 I0.2 I0.3 AIW0 Q0.0 Q0.1 Q0.2 Q0.3 28

系统的硬件设计 号 输出信号 3#泵工频运行接触器及指示灯 3#泵变频运行接触器及指示灯 水池水位上下限报警指示灯 变频器故障报警指示灯 白天模式运行指示灯 报警电铃 变频器频率复位控制 变频器输入电压信号 KM5、HL5 KM6、HL6 HL7 HL8 HL9 HA KA Uf Q0.4 Q0.5 Q1.1 Q1.2 Q1.3 Q1.4 Q1.5 AQW0 结合系统控制电路图3.3和PLC的I/O端口分配表3.2,画出PLC及扩展模块外围接线图,如图3.4所示:

4681012141618202224N12+-压力变送器输出压力信号1L0.00.10.20.3。2L0.40.50.60.71.03L1.11.21.31.41.51.61.7。地NL1Q02×RS485Q1CPU 226 CNI0I1I2AC增益1M0.00.10.20.30.40.50.60.71.01.11.21.31.42M1.51.61.72.02.12.22.32.42.52.62.7ML+SA1SB7SU水位上下限信号窗口SLHL比较器输入变频器液位变送器图3.4 PLC及扩展模块外围接线图

本变频恒压供水系统有五个输入量,其中包括4个数字量和1个模拟

29

偏移配置ML+地M0V0I0RAA+A-RBB+B-RCC+C-RDD+D-EM235 系统的硬件设计

量。压力变送器将测得的管网压力输入PLC的扩展模块EM235的模拟量输入端口作为模拟量输入;开关SA1用来控制白天/夜间两种模式之间的切换,它作为开关量输入I0.0;液位变送器把测得的水池水位转换成标准电信号后送入窗口比较器,在窗口比较器中设定水池水位的上下限,当超出上下限时,窗口比较其输出高电平1,送入I0.1;变频器的故障输出端与PLC的I0.2相连,作为变频器故障报警信号;开关SB7与I0.3相连作为试灯信号,用于手动检测各指示灯是否正常工作。

本变频恒压供水系统有11个数字量输出信号和1个模拟量输出信号。Q0.0~Q0.5分别输出三台水泵电机的工频/变频运行信号;Q1.1输出水位超限报警信号;Q1.2输出变频器故障报警信号;Q1.3输出白天模式运行信号;Q1.4输出报警电铃信号;Q1.5输出变频器复位控制信号;AQW0输出的模拟信号用于控制变频器的输出频率。

图3.4 只是简单的表明PLC及扩展模块的外围接线情况,并不是严格意义上的外围接线情况。它忽略了以下因素:(1) 直流电源的容量;(2) 电源方面的抗干扰措施;(3) 输出方面的保护措施;(4) 系统的保护措施等。

30

系统的软件设计

4 系统的软件设计

4.1 系统软件设计分析

硬件连接确定之后,系统的控制功能主要通过软件实现,结合泵站的控制要求,对泵站软件设计分析如下:

(1) 由“恒压”要求出发的工作泵组数量管理

为了恒定水压,在水压降落时要升高变频器的输出频率,且在一台水泵工作不能满足恒压要求时,需启动第二台水泵。判断需启动新水泵的标准是变频器的输出频率达到设定的上限值。这一功能可通过比较指令实现。为了判断变频器工作频率达上限值的确实性,应滤去偶然的频率波动引起的频率达到上限情况,在程序中应考虑采取时间滤波。

(2) 多泵组泵站泵组管理规范

由于变频器泵站希望每一次启动电动机均为软启动,又规定各台水泵必须交替使用,多泵组泵站泵组的投运要有个管理规范。在本设计中,控制要求中规定任一台泵连续变频运行不得超过3h,因此每次需启动新水泵或切换变频泵时,以新运行泵为变频泵是合理的。具体的操作是:将现行运行的变频器从变频器上切除,并接上工频电源运行,将变频器复位并用于新运行泵的启动。除此之外,泵组管理还有一个问题就是泵的工作循环控制,本设计中使用泵号加1的方法实现变频泵的循环控制,用工频泵的总数结合泵号实现工频泵的轮换工作。

(3) 程序的结构及程序功能的实现

由于模拟量单元及PID调节都需要编制初始化及中断程序,本程序可分为三部分:主程序、子程序和中断程序。系统初始化的一些工作放在初始化子程序中完成,这样可以节省扫描时间。利用定时器中断功能实现PID控制的定时采样及输出控制。主程序的功能最多,如泵切换信号的生

31


01吴新财毕业论文(7).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:2024七年级上第二次月考英语试卷和答卷纸(龚娜) - 副本

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219