10=2×514=2×7
10和14的最大公约数。()
B、笔练:求44和66,18和24的最大公约数。(两人做在投影片上)
C、反馈矫正。
(4)教学用简便方法求最大的公约数
A、为了方便,通常用P.48的方法求最大公约数:(教师边讲边板书)
36和60的最大公约数是:2×2×3=12
......把所有除数连乘
或:(36,60)=2×2×3=12
B、练习:课本P.51试一试。
---------------------------------------------------------------范文最新推荐------------------------------------------------------
提问:这种方法和刚才的方法有什么本质上的关系?
学生回答后明确:实际上是把两个数同时分解质因数,用两个数公有的质因数去除,所以除数之积就是最大公约数。
C、巩固练习:求42和54、39和65的最大公约数。
2、教学求特殊关系的两数的最大公约数。
(1)求下面各组的最大公约数
4和209和3628和7
A、学生练习
B、反馈讨论(学生汇报结果,教师板书)
(4,24)=4(9,36)=9(28,7)=7
C、观察每组数的最大公约数有什么特点?每组中的两个数又有什么关系?
7 / 10
你发现了什么?(用自己的话说一说)
D、规律应用:下面每组数的最大公约数各是几?(口答)
45和1536和1842和18
(2)求下面各组数的最大公约数
9和105和2117和8
A、学生练习并同桌讨论:每组的最大公约数有什么规律?每组中两个数又有什么特点?
B、反馈讨论,明确规律。
C、口答下列每组的最大公约数
3和1124和89和1425和2613和17
3、综合练习:求下面每组数的最大公约数。
---------------------------------------------------------------范文最新推荐------------------------------------------------------
20和2516和3528和36
6和1418和5485和115
(1)学生练习。
(2)反馈,效果检查。
三、课堂总结
提问:1、本节课学习可什么内容?
2、一般情况下怎样求两个数的最大公约数?
3、倍数关系与互质关系的最大公约数各有什么特点?
四、作业《作业本》
从繁琐到简单,从一一列举到短除法,从一般到特殊,逐步引导学生掌握求两个数的最大公约数的方法。
9 / 10