这种方案系统单元设计简单,由于采用的专用的双绞线作为通讯介质,所以具有抗干扰性能强、通讯效果好,通讯稳定性高的优点。现对几种典型的有线智能控制系统进行概述:
(1)DALI系统
DALI意为数字式可寻址照明控制接口标准,是一种专门的智能照明系统,它定义了实现各种智能照明控制模块之间数字通信的接口标准。在欧洲有多家厂商研究开发符合DALI标准的产品,DALI标准已被编入欧洲电子镇流器标准。它支持“开放系统”的概念,只要它们遵守DALI标准,不同制造厂商的产品可以互连。
DALI技术实现了采用尽量少的设备,提供高效简便操作的智能化照明控制方式。DALI系统的性价比高于1~10V系统,低于复杂的总线系统。DALI系统可以通过DALI/1~10V转换器实现对带有1~10V接口设备的控制,并可通过网关实现与其他总线控制系统的集成(如BA系统),故具有广泛的应用前景。 (2)EIB系统
EIB即欧洲电气接线装置总线智能控制系统, 是为电气接线装置专业打的智能化控制系统,照明系统是该系统的一个组成部分。
EIB总线系统作为欧洲安装总线标准,利用一条双绞线作为控制总线,取代了传统数量繁多的导线,使照明、调光、百叶窗、场景控制、用电负荷控制、保安、供热系统实现智能化,并成为一个完整的总线系统。EIB总线系统也可依据外部环境的变化自动调节总线中设备的状态,达到安全、节能、人性化的效果,并能在今后的使用中根据用户的要求增加或修改系统的功能,而无须重新铺设电缆,真正成为灵活的电气安装系统,这是传统的电缆铺设方式所无法做到的。
EIB标准是一个开放式的系统:可以由任何人、在任何芯片或可供选择的处理平台上实现。该系统该系统是在欧洲占主导地位的楼宇自动化和家庭自动化标准。 (3)DMX512系统和DMX-NET系统
DMX512系统是当今使用最广的灯光通讯协议,光范应用在舞台灯光及景观照明系统中。该系统为美国剧院技术协会把 Colortran 公司CMX192中的Band rate从153.6Kbit/s提升至250Kbit/s及192CH变为512CH后发表。由于结构简单、成本低、安装使用方便,各大厂商先后把DMX512接口加到产品上,它的使用非常广泛。DMX512协议成功推广的原因是数十年来电脑灯具的迅速发展及大量使用于大型演出以及城市景观照明的迅猛发展,DMX512可产生的各种奇妙的照明效果。
DMX512控制线采用5针XLR连接设备,母接口适用于发送器,而公接口适用于接收器。 DMX-NET系统是把计算网络技术和DMX512标准整合在一起形成的智能照明控制系统。该系统融合两种技术的优点,使整个系统的带宽、距离、可靠性和双向等功能的实现,这意味着在一个网络里可同时连接的设备更多,且连接的距离更长,传输控制协议使可调光
5
照明系统的控制质量和可靠性更高,双向通讯使设备的远程监测和控制更有效,因而构筑大规模可靠的可调光照明系统的网络成本更低。 (4)其他
除此之外,还有许多类似的总线制照明控制系统,它们的功能近似,通讯协议各不相同,如美国路创电子公司的GRAFIK6000R智能照明控制系统、澳大利亚邦奇公司的Dynalite智能照明控制系统,日本松下公司的EMIT全二线WRT2040型智能照明控制系统、瑞朗公司的RL-X10智能照明控制系统以及奇胜公司采用总线制加红外遥控器组成的C-Bus智能照明控制系统系统等。 3.1.2电力线路载波控制系统
电力线路载波是利用现有电力线作为传输媒介,通过载波方式高速传输模拟或数字信号,实现数据传输和信息交换的一种技术。目前适用频率范围:50KHz~200KHz。
在电力线上通过载波方式进行系统联网,每个系统控制单元所发出的控制信号都通过载波方式在整个电力线里进行传播,各个系统控制单元从电力线上接收到控制信息后,则根据系统通讯协议的规定执行相应的动作,从而实现智能网络控制。这种方案与总线方案相比,取消了专用的网络线,安装或扩展也较为简单,只需连接电源线就可实现网络控制。
但此方案在具体应用上往往由于电力线的干扰问题而变得不稳定。电力线路载波信号会随着距离增大快速衰减,公用变压器线路工频谐波对其干扰也很大。电力线上众多电气设备都均是载波通讯的干扰源,其中以电子类产品较为严重,它们或者产生干扰信号,影响系统单元的接收,或者吸收系统单元所发出的载波信号,使其它单元无法正确接收,从而使控制失灵。为了解决这类问题,需要在此类电器的电源进线和总电源进线处安装各种阻波器来隔阻干扰,保障载波通讯的稳定和可靠性。由于目前我国的电源质量欠佳,造成通信的可靠性不高,且成本很高,因此其技术进入使用的难度很大,目前较难进行市场推广。
由于400 V 以下民用电力线路对通信而言是一个不确定、无规则、随机干扰、网络拓扑呈非标准型的通信网,增加了载波技术开发的难度。目前利用电力线载波进行通信的产品中,主要使用窄带通信和扩频通信两种方式。当信道容量一定时,信道带宽与信噪比之间存在着互换关系,增加带宽则可降低对信噪比的要求,即通过扩展信号的带宽,可有的提高系统抗干扰的能力。随着扩频技术的成熟和国内电源质量的提高,其应用将成为可能。 3.1.3无线智能照明系统
随着无线通讯技术的发展和物联网的兴起,采用无线通讯的智能网络控制系统开始出现。这种系统的每个系统控制单元所发出的控制信号都以无线电波的进行传播,各个系统控制单元接收这些传播信息,然后根据系统通讯协议的规定执行相应的动作,从而实现智能网络控制。与电力线载波方案一样,由于没有专用的网络线,安装或扩展非常简单。对
6
于Zig Bee系统甚至可以使用电池供电,不用连接电源线,使用非常灵活方便,同时也降低了用户的总体应用成本。
现代无线通讯技术和计算机网络技术的发展,已经解决了无线通讯可靠性和互相串扰等问题,使无线网络技术得到空前的发展。从技术发展方向看,基于有线的照明控制系统,具有布线麻烦,增减设备需要重新布线、系统可扩展性差、系统安装和维护成本高以及移动性能差等缺点,因此无线通信技术,是实现智能照明系统的理想选择。无线网络技术有着无可比拟的先天优势,近几年来得到飞速发展,物联网技术也成为了新的热点。 (1)ZigBee
ZigBee技术主要应用在短距离范围内以及数据传输速率不高的各种电子设备之间,因此非常适用于照明等小型电子设备的无线控制指令传输。其典型的传输数据类型有周期性数据(如传感器)和间歇性数据(如照明控制)。其目标功能是自动化控制,它采用跳频技术,使用的频段分别为2.4GHz (ISM)、868MHz(欧洲) 及915MHz(美国)。而且均为免执照频段,有效覆盖范围已达到70~200m。
将ZigBee收发模块嵌入到光源电器的终端控制中,包括镇流器、人机交换设备等,可构成布线成本极低的全数字无线寻址全双工通信的照明控制系统。ZigBee技术的出现,推进了多主(每一个节点具有一定的自主智能)分布式控制系统的实用化进程,其网络可由一个节点管理若干子节点,最多一个节点可以管理254个子节点。同时该节点还可由上一层网络节点管理。可组成65536个节点的大型网络。
因为ZigBee数据传输速率低,协议简单,所以大大降低了成本,相比于Wi-Fi和UWB等这些适用于无线局域网和多媒体应用的高速率无线标准而言,价格非常低廉。且ZigBee的响应速度较快,一般从睡眠状态转入工作状态只需15ms,节点连接进入网络只需要30ms,进一步节约了能源。相对而言,Bluetooth需要3~10s,WiFi需要3s。 (2)GPRS
GPRS即通用无线分组业务,是一种基于GSM系统的无线分组交换技术,提供端到端的、广域的无线IP连接。通俗地讲,GPRS是一项远距离的高速数据处理技术。它是以分组的形式传送资料到用户手上。虽然GPRS是作为现有GSM网络向第三代移动通信演变的过渡技术,但是它在许多方面都具有显著的优势。它让用户使用一部手机就能行遍全球,可以通过手机发送及接收电子邮件,在互联网上浏览等,它比WAP优越,下载资料和通话可以同时进行,声音传递用GSM而数据传输用GPRS。GPRS系统由于应用在公网上,其低廉的数据流包月费用,是照明系统最佳的小数据远传通讯方式。 (3)其他无线智能控制系统
近年来,近距离无线通信技术获得了迅猛的发展。其中主流技术还有红外技术、蓝牙、Wi-Fi和UWB技术等,另外还有Z-Wave和MiWi等专有无线技术,它们都有各自的标准、特点和相应的应用领域。
对于照明控制系统的特点,ZigBee具有明显的技术优势。
7
3.2智能照明控制系统的发展方向
目前,纵观国内外研究开发的智能照明控制系统,按其通信介质主要有总线型、电力线载波型、无线网络型等。按照网络的拓扑结构可以分为集中式或分布式。集中式智能照明控制系统主要为星形拓扑,即以中央控制节点为中心,把若干外围节点连接起来的辐射式互连结构。各照明控制器、控制面板等设备均连接到中央控制(CPU)上,由中央控制器向照明控制器等末端执行单元传送数据包。该系统的优点:照明的控制功能高,故障的诊断和排除简单,存取协议简单,传输速率较高。其缺点是:因过分依赖中央控制器,故系统的可靠性和经济性相对较低。虽然采用多种改进措施后,可提高中央控制器和系统的可靠性,但其价格上的劣势仍十分突出。分布式智能照明控制系统以中央监控为中心,组建控制主干网和多个控制子网,各照明控制器,控制面板等设备均具有中央处理器CPU单元,每个控制器和面板都可以直接连接在子网上。系统将原控制中心的控制功能分散至靠近末端的控制设备,通过一种访问控制策略,决定设备与监控中心信息传输的顺序。
为了组建分布式智能照明控制系统,一般情况下是把照明控制器和面板之间通过现场总线相连接,组建现场总线子网。把照明线路中的开关或控制箱作为现场总线中的一个网络节点,然后通过现场总线这个枢纽组成网络,所有的控制信号、开关灯的状态信号以及采集的电量信号都通过现场总线网络进行通信,这样,网络中的每个节点都可以接受网络中其他节点的信息,非常方便的实现节点间互相监测与控制。这样就可以脱离于中央监控主机而独立运行,同时也解决了现场设备层的每个控制量一根线的点对点连接方式带来的种种弊端,现场总线控制系统采用总线连接方式替代一对一的连线,减少了由接线点造成的不可靠因素。同时系统具有现场级设备的在线故障诊断、报警、记录功能,可完成远程设备的参数设定、修改等参数化工作,也增强了系统的可维护性。现场总线网络系统具有优良的系统扩展性,可以非常方便增加网络节点,如增加声音检测、照度检测、图像采集、红外线信号采集等网络节点,通过这些传感器节点采集人们活动环境的变化参数,上传至中央监控主机分析、处理、计算,做出各种控制决策,实现智能化管理,能够更好的满足智能建筑的信息集成要求。现场总线是数字化通信网络,可以实现设备状态、故障、参数信息传送。采用现场总线网络取代传统的控制电缆,大大地减少了电缆敷设工程费用,降低了系统及工程成本。现场总线控制系统既是一个开放通信网络,又是一种全分布式控制系统,它把单个分散的测量控制设备变成网络节点,以现场总线为纽带,把它们连接成可以相互沟通信息、共同完成自控任务的网络系统与测控系统。
因而研究基于现场总线技术的智能测控节点成了研究测控新技术和新发展的重点。由于现场总线适应了工业控制系统向分散化、网络化、智能化发展的方向,它一经产生便成为全球工业自动化技术的热点,受到全世界的普遍关注。现场总线的出现,导致目前生产的自动化仪表、集散控制系统、可编程控制器在产品的体系结构、功能结构方面的较大变革、自控化设备的制造厂家被迫面临产品更新换代的又一次挑战,因而对智能测控节点的研究既是对先进技术应用的研究,也是开发市场的需要。而在照明控制中应用最广泛的是
8
LonWorks现场总线,LonWorks网络,简称L0N网,它标志着控制系统网络化的新纪元。LonWorks是一种完整的、全开放的、可互操作的、成熟的和低成本的分布式控制网络技术,众多的制造厂和用户纷纷在其控制网络方案中采用LonWorks技术。基于LonWorks智能节点的照明控制系统主要是以Neuron芯片作为智能控制节点,控制下属的各类执行单元。
4 发展趋势
本世纪80年代以来, 随着计算机技术和网络技术的发展, 带来了信息科学技术的革命, 尤其是信息高速公路热引发了一场新的革命, 使人们突破了时间、空间及计算技术的束缚, 实现了多个对象间的直接信息交流。信息成为社会经济、科技等赖以发展的一项重要资源, 信息化成为一个城市现代化程度的最高标志之一。在国内一些经济发达的大城市如上海、深圳、大连等, 纷纷开展自己的信息化建设, 建立起集语言、数据、视频图像为一体的多媒体宽带综合业务数字网, 并将光纤入户作为远期目标, 故纷纷要求各建筑物或建筑群应建立交换间, 进行电话、数据、电视信息分配, 并规定今后新建灭火系统, 大楼一律采用综合布线系统, 以避免重建或多次反复布线设计与施工。在这种趋势下照明控制系统也越来越趋向于智能化。现场总线技术被广泛应用到照明系统中,其控制的系统结构也越来越多样化,从最早的集中式,集散式向分散式发展,各控制单元的工作独立性不断提高,系统的可靠性和经济性也不断提高。无线传感网络近几年也被应用到该领域,实现无线控制。控制器局域网CAN总线式是连接控制单元、测试仪器的一种串行通信协议,属于最有影响力的现场总线之一。由于CAN总线本身的优点,它的应用范围己不再局限于汽车行业,而向机械制造、纺织机构、农用机械、机器人、数控机床、医疗器械、建筑物管理监控、火车、船舶、传感器等领域发展。
5 结论
本文系统全面地分析了照明控制的发展历史过程,以及未来的发展方向。智能照明控制技术顺应了21世纪的计算机技术、通信技术、控制技术的发展潮流,具有节约能源,提高照明质量,延长光源寿命等优点,很快会成为照明行业地新锐主流产品并将取代传统的照明控制。
本文把CAN总线技术应用到智能照明控制系统中,组建成分布式控制系统,是本文的创新点之一。在分析比较了传统的控制方式、集中式控制方式和分布式控制方式的各自特点。提出了基于CAN总线的分布式智能照明控制系统结构,讨论了各以N网络节点的功能、特点、技术要求等,设计了一个基于CAN总线的智能照明控制系统。
基于现场总线的分布式智能照明控制系统增强了现场级信息集成能力,采集了大量跟照明设备相关的信息,电压、电流、照度、运行状态等。还可以实现设备状态、故障、参数信息传送。系统可靠性高、可维护性好,并具有开放式、互操作性、互换性、可继承性等性能。对于空间比较分散的照明控制区域来说,省去了大量的电缆、FO模块及电
9