(徐汇区)数学参考答案及评分说明
一、选择题(本大题共6题,每题4分,满分24分)
1.C; 2. A; 3.B; 4.C; 5. D; 6.C. 二、填空题(本大题共12题,每题4分,满分48分)
7.a2?2ab; 8.2?1; 9.1.3?105; 10.?6; 11.y?2x?2; 12.y2?4y?3?0; 13.2; 14.
ab; 15.9; 16.50; 17.?2a?6b ; c18.14. 三、解答题:(本大题共7题,满分78分) 19.解:原式?a?1?a?1a?1??1?????????????????(4分)
?a?1??a?1?a?2a?1 ????????????????????(4分) ?a?1a?1a?1. ??????????????????????(2分) ?a?1??4x?6?1?x,①,
3x?1?x?5,②????20. 解不等式组:?由①得4x?x??5,x??1,????????????????????(3分)
由②得3x?3?x?5,x?4,????????????????????(3分) 所以,原不等式组的解集为?1?x?4,????????????????(2分) 不等式组的解集在数轴上表示正确. ?????????????????(2分) 21.(1)∵AB是圆O的直径,且AB⊥CD,∴CH?DH,??????? (2分)
∴BC=BD. ?????????????????????????(2分)(2)联
结OC. ???????????????????????????(1分)
1∵CD平分OA,设圆O的半径为r,则OH?r,
21∵CD?6,∴CH?CD?3,??????????????????(1分)
2∵∠CHO?90°,∴OH2?CH2?CO2,??????????????(2分)
?1?∴?r??32?r2,∴r?23.?????????????????? (2分) ?2?22.(1)35;(2)
25;(3)1205;(4)48. ?????(2分,2分,3分,3分) 1223. (1)∵四边形ABCD是正方形,∴BC=CD,且∠BCE=∠DCE. ????(2分) 又∵CE是公共边,∴△BEC≌△DEC,???????????????? (2分) ∴∠BEC =∠DEC.????????????????????????? (1分) (2)联结BD .???????????????????????????(1分) ∵CE=CD,∴∠DEC =∠EDC.???????????????????? (1分) ∵∠BEC =∠DEC,∠BEC =∠AEF,∴∠EDC=∠AEF.
6
∵∠AEF+∠FED=∠EDC+∠ECD,
∴∠FED=∠ECD.????????????????????????? (1分) ∵四边形ABCD是正方形,
11∴∠ECD=∠BCD =45°, ∠ADB=∠ADC= 45°,∴∠ECD=∠ADB.? (1分)
22∴∠FED=∠ADB. ???????????????????????? (1分) 又∵∠BFD是公共角,∴△FDE∽△FBD,?????????????? (1分) EFDF2?∴,即DF?EFBF. ??????????????????(1分) DFBF24.(1)A点坐标为(0,1)??????????????????????(1分) 将y=5代入y?x?1,得x=4
∴B点坐标为(4,5)?????????????????????????(1分) 将A、B两点坐标代入y?x?bx?c 解得?2?b=-3 ?c=1∴二次函数解析式为y?x2?3x?1?????????????????(2分)
35,?)???????????????????(1分) 2435抛物线对称轴与直线AB的交点记作点G,则点G(,)
22(2)P点坐标为(∴PG=
5515?(?)?, 244?SAPG?S∴SABPBPG?15.???????????????????(2分) 2(3)设C点横坐标为a
则C点坐标为(a,a?1),D点坐标为(a?2,a?3),??????????(1分) E点坐标为(a,a?3a?1),F点坐标为(a?2,a?a?1),???????(1分) 由题意,得 CE=?a?4a,DF=a?4,
∵且CE、DF与y轴平行,∴CE∥DF,又∵CF∥ED,
∴四边形CEDF是平行四边形,∴CE?DF,?????????????(1分) ∴?a?4a?a?4,解得a1?1?3,a2?1?3(舍),???????(1分) ∴C点坐标为(1?3,2?3).??????????????????(1分) 25. 解:(1)∵MN∥AO,∴
222222MBBN,??????????????(2分) ?BOAB 7
∵?C?90?,AC?BC,AB?6,∴BC?32, ∵O是BC边上的中点,∴BO?32,???????????????(1分) 2∵AN?x,BM?y,∴2?6?x?6?xy?,∴??0?x?6?.???(2分)
46322y(2)∵以DN为半径的D和以MG为半径的M外切,
∴DN?MG?DM,又DN?MN?DM,∴MG?MN,???????(1分) ∴?MNG??G, 又?MNG??AND,∴?AND??G, ∵AC?BC,∴?CAB??CBA,∴?DAN??MBG,
又AN?BG,∴?AND≌?BGM, ∴DN?MG?MN,???????(1分) ∵?ACB?90?,∴CN?DN,∴?ACN??D, ??????????(1分)
CO1(1分) ?,
AC21∵MN∥AO,∴?CAO??D,∴?CAO??ACN,∴tan?ACN?,?(1分)
2∵?ACB?90?,AC?BC,O是BC边上的中点,∴tan?CAO?(3)∵?DAN??MBG,当?ADN与?MBG相似时, ①若?D??BMG时,过点G作GE?CB,垂足为点E. ∴tan?BMG?2GE1x,?????????(1分) ?,∴BM?BE,∴y?2ME2,∴x?2.?????????????????????(1分)
又y?2?6?x?4②若?D??G时,过点M作MF?AB,垂足为点F. ∴tan?G?2y1,∴BF?BG,∴x?,??????????????(1分)
22,∴x?又y?2?6?x?46.?????????????????????(1分) 56. 5综上所述,当?ADN与?MBG相似时,AN的长为2或
(以上各题,若有其他解法,请参照评分标准酌情给分)
8

