ans = '因素' '3.3' '3.4' '3.5' '3.6'
'0.03' [63.1000] [63.9000] [65.6000] [66.8000] '0.04' [65.1000] [66.4000] [67.8000] [ 69] '0.05' [67.2000] [ 71] [71.9000] [73.5000] 然后,调用 anova2 函数作双因素方差分析,返回检验的 p 值向量,方差分析表 table, 结构体变量 stats,命令如下: [p,table,stats]=anova2(X) p = 0.0012 0.0001
table = 'Source' 'SS' 'df' 'MS' 'F' 'Prob>F'
'Columns' [35.1692] [ 3] [11.7231] [21.9236] [0.0012] 'Rows' [ 74.9117] [ 2] [37.4558] [70.0473] [6.9271e-05] 'Error' [ 3.2083] [ 6] [ 0.5347] [] [] 'Total' [113.2892] [11] [] [] [] stats = source: 'anova2' sigmasq: 0.5347
colmeans: [65.1333 67.1000 68.4333 69.7667] coln: 3
rowmeans: [64.8500 67.0750 70.9000]
rown: 4 inter: 0 pval: NaN df: 6
由运行结果可知,碳的含量和锑与铝的含量之和对合金的强度有显著影响,同时,还可知,而这之间无交互作用。此外,anova2函数还生成一个方差分析表如下: