XX广电宽带网络技术建议书
3.3 GE与其他宽带技术的比较
1、保护现有投资
(1) 能够进一步提高性能;
(2) 费用最少(包括购置费用和技术支持费用); (3) 对处理新的应用需求和新的数据类型的适应性。 2、与已有网络的接口
以太网目前有三种类型:10Mbps、100Mbps、1000Mbps。由于世界上有80%的网络节点是以太网,并且以上3种网络是向上兼容的,因此,千兆以太网最能保护现有投资。
另一方面,人们也可能会说,如果现在将网络换成ATM,或者POS技术,尽管初期会有损失或价格昂贵,但从长远看还是很值得的。
ATM可将现有网络带宽提高若干数量级。尽管它的发展很慢,但是将ATM用于高速的广域网主干是无可非议的。然而,在宽带城域网中使用ATM和POS技术的必要性和可竞争性,将比不上易安装、易维护且价格低廉的千兆以太网。未来的宽带网将是数据直接在光纤上传输,ATM的地位将逐步缩减,而以太网作为接入方式将可以一致延续下去。在虚拟网支持中,由于ATM服务开展大多采用永久虚电路(PVC,RFC1483),同一端口产生的2条PVC之间不能直接通讯,必需采用全网状拓扑结构或中心路由器进行转发,显然在扩充性和性能上比不上GE。IP over SDH是利用SDH作为网络平台,具有高速率、高可靠性的优势,主要用于长途骨干传输,但是其成本和后期维护费用要远高于其他几种骨干网构造方式。而且,SDH采用时分复用(TDM)技术,与IP协议的统计复用技术不能实现无缝连接。从网络升级的角度考虑,近几年SDH线路增长速率较慢,升级费用较高。
3、后续支持费用
对网络支持的费用也非常重要,据估计安装网络只是占组建网络总费用的20%。今天的以太网用户在运行以太网时已经取得了很多经验,所有这些经验仍
10
XX广电宽带网络技术建议书
然可用于千兆以太网,他们在跟踪网络最大负载及优化网络性能所做的开发,在千兆以太网也能保留使用。当然网络分析仪必须改进,以便用于帧格式和拓扑结构都不变,而速度提高了的以太网络。千兆以太网用于培训的费用也最少。
4、服务质量保证
新的Internet/Intranet应用,已开始出现声音和视频等新的数据类型。传统的以太网不适合实时的应用,事实上这也促使了在局域网上使用ATM。
ATM的服务质量保证(QoS)给用户提供了理论上的服务级别保证,保证用户实时的传输。因为传统的以太网没有能力根据应用类型提供服务质量保证,所以它曾被认为不适合传输包括声音或视频的多媒体数据,然而最近提出的新协议标准可使以太网设备为传送多媒体数据或关键业务提供服务质量保证。新标准802.1Q(对虚拟桥接网络的标准)和802.1P(对桥接网络中传输的级别及动态多路广播滤波服务的标准)将提供虚拟网能力,并提供在所有网络上传输包的优先级信息,因此支持QoS服务质量保证的优点将会用于所有网络。而目前以太网交换机中广泛使用的的硬件队列处理技术可以为上述不同类别的流量提供端到端的服务质量保证。
5、兼容性
千兆以太网从定义上来讲与传统的以太网及应用最兼容,而ATM需要用局域网仿真来完成信元和数据包之间的转换。同样在今天的ATM还需要RFC1577、IPOA、I-PNNI或MPOA来支持IP应用。采用POS技术,亦需要将IP数据封装到PPP数据祯中,在PPP的数据祯与以太网祯之间转换。,而使用千兆以太网可以提供端到端完全兼容的解决方案。
由于以上原因,千兆以太网是目前高速宽带网的最佳选择。而随着万兆以太网的出现和DWDM技术标准的日趋成熟,昂贵的ATM和POS将不再具有市场竞争力。未来的网络主干将是Ethernet over DWDM。
11
XX广电宽带网络技术建议书
3.4 主干设备
网络主干设备即中心节点设备的系统结构直接决定了设备的性能和功能水平。这犹如先天很好的一个婴儿和一个先天不足的婴儿,即便后天成长条件完全相同,他们的能力依然有相当大的差别。因此,深入了解设备的系统结构设计,客观认知设备的性能和功能,这对正确选择设备极有帮助,下面将从七个方面对该问题进行讨论。
3.4.1 交换结构 (Switching Fabric)
随着网络交换技术不断的发展,交换结构在网络设备的体系结构中占据着极为重要的地位。为了便于理解,这里仅简述三种典型的交换结构的特点:
共享总线:由于近年来网络设备的总线技术发展缓慢,所以导致了共享总线带宽低,访问效率不高;而且,它不能用来同时进行多点访问。另外,受CPU频率和总线位数的限制,其性能扩展困难。它适用于大部分流量在模块本地进行交换的网络模式。
共享内存:其访问效率高,适合同时进行多点访问(MULTICAST)。共享内存通常为DRAM和SRAM两种,DRAM速度慢,造价低,SRAM速度快,造价高。共享内存方式对内存芯片的性能要求很高,至少为整机所有端口带宽之和的两倍(比如设备支持32个千兆以太网端口,则要求共享内存的性能要达到64Gbps)。由此可见,既便不考虑价格因素,内存芯片技术本身在某种程度上也限制了共享内存方式所能达到的性能水平。
交换矩阵(Cross bar):由于ASIC技术发展迅速,目前ASIC芯片间的转发性能通常可达到1Gbps,甚至更高的性能,于是给交换矩阵提供了极好的物质基础。所有接口模块(包括控制模块)都连接到一个矩阵式背板上,通过ASIC芯片到ASIC芯片的直接转发,可同时进行多个模块之间的通信;每个模块的缓存只处理本模块上的输入/输出队列,因此对内存芯片性能的要求大大低于共享内存方式。总之,交换矩阵的特点是访问效率高,适合同时进行多点访问,容易提供非常高的带宽,并且性能扩展方便,不易受CPU、总线以及内存技术的限制。Avaya
12
XX广电宽带网络技术建议书
Cajun P882和P550核心骨干路由交换机就是采用了广播优化的Cross Bar技术。
3.4.2 阻塞与非阻塞配置
阻塞与非阻塞配置是两种截然不同的设计思想,它们各有优劣。在选型时,一定要根据实际需求来选择相应的网络设备。
阻塞配置:该种设计是指:机箱中所有交换端口的总带宽,超过前述交换结构的转发能力。因此,阻塞配置设计容易导致数据流从接口模块进入交换结构时,发生阻塞;一旦发生阻塞,便会降低系统的交换性能。例如,一个交换接口模块上有8个千兆交换端口,其累加和为8Gbps,而该模块在交换矩阵的带宽只有2Gbps。当该模块满负荷工作时,势必发生阻塞。采用阻塞设计容易在千兆/百兆接口模块上提高端口密度,十分适合连接服务器集群(因为服务器本身受到操作系统、输入/输出总线、磁盘吞吐能力,以及应用软件等诸多因素的影响,通过其网卡进行交换的数据不可能达到网卡吞吐的标称值)。
非阻塞配置:该设计的目标为:机箱中全部交换端口的总带宽,低于或等于交换结构的转发能力,这就使得在任何情况下,数据流进入交换结构时不会发生阻塞。因此,非阻塞设计的网络设备适用于主干连接。在主干设备选型时,只需注意接口模块的端口密度和交换结构的转发能力相匹配即可。当要构造高性能的网络主干时,必须选用非阻塞配置的主干设备。
Avaya Cajun P882和P550核心骨干路由交换机均采用无阻塞设计。
3.4.3 采用何种方式实现第3层处理
众所周知,每一次网络通信都是在通信的机器之间产生一串数据包。这些数据包构成的数据流可分别在第3层进行识别。
在第3层(Network Layer,即网络层,以下简称L3),数据流是通过源站点和目的站点的网络地址被识别。因此,控制数据流的能力仅限于通信的源站点和目的站点的地址对,实现这种功能的设备称之为路由器。路由器在网络中占据着核
13
XX广电宽带网络技术建议书
心的地位。传统路由器是采用软件实现路由功能,其速度慢,且价格昂贵,往往成为网络的瓶颈。随着网络技术的发展,路由器技术发生了革命,路由功能由专用的ASIC集成电路来完成。现在这种设备被称之为第三层交换机或叫做交换式路由器。 传统路由器具有阅读第3层报头信息的能力(通过软件实现),与第三层交换机(或交换式路由器)采用专用的ASIC集成电路相比,设备的性能几乎相差了两个数量级。
值得指出的是:网络主干设备的系统结构在设计上分成两大类:集中式和分布式。即便两者都采用了新的技术,但就其性能而言,仍存在着较大的差异。
集中式:
所谓集中式,顾名思义,L3/L4数据流的转发由一个中央模块控制处理。因此,L3/L4层转发能力通常为3M-4Mpps,最多达到15Mpps。
分布式:
将L3/L4层数据流的转发策略设置到接口模块上,并且通过专用的ASIC芯片转发L3/L4层数据流,从而实现相关控制和服务功能。L3/L4层转发能力可达 40Mpps 至 106Mpps。
3.4.4 系统容量
由于网络规模越来越大,网络主干设备的系统容量也成为选型中的重要考核指标。建议重点考核以下两个方面:
物理容量
各类网络协议的端口密度,如千兆以太网、快速以太网,尤其是非阻塞配置下的端口密度。
逻辑容量
路由表、MAC地址表、应用数据流表、访问控制列表(ACL)大小,反映出设备支持网络规模大小的能力(先进的主干设备必须支持足够大的逻辑容量,以及非阻塞配置设计下的高端口密度。)
14