用多种方法证明命题:sin2200+sin2800+cos200cos800=5/4 禹州市二高 连秀明
证明:sin2200?sin2800?cos20cos80?5 4一、角的变换
证明,法一:sin2200?sin2800?cos200cos800?sin2200?sin2(600?200)?cos200cos(600?200)?sin200?sin(600?200)?2sin200sin(600?200)?cos200cos(600?200)31cos200?sin200)2?sin200sin(600?200)?cos10002233?(sin200?cos200)2?sin200sin(600?200)?cos100022?(sin200????2?3sin(200?300)?sin200sin(600?200)?cos100031sin200cos200?sin2200?cos10002231?cos4000?sin40?4431?sin400?cos400441?cos10002??21?cos1000?3?231??cos10002251??cos10004251??cos1000425?4
二、降幂,积化和差,和差化积
证法二:sin2200?sin2800?cos20cos801-cos4001?cos1600???cos200cos800221?1?(cos400?cos200)?cos200cos8002?1?sin300sin100?cos200sin10011?1?sin100?(sin300?sin100)2215?1??44
三、证法三:利用特殊角
2左=sin220?+sin(20?+60?)+cos20?cos(20?+60?)1332?1=sin220?+(sin20?+cos20?)+cos20(cos20?-sin20?)222213313=sin220?+sin220?+sin20?cos20?+cos220?+cos220?-sin20?cos20?4242255=(sin220?+cos220?)=44
问题推广变形:
推广一:sin2??sin2(600??)?cos?cos(600??)?54
证:sin2??sin2(600??)?cos?cos(600??)1?cos2?1?cos(1200?2?)???cos?cos(600??)221?1?(cos2??cos(1200?2?))?cos?cos(600??)2?1?cos(600?2?)cos600?cos?cos(600??)1?1?cos(600????)?cos?cos(600??)21?1?cos(600??)cos??sin(600??)sin??cos?cos600??21?1?cos(600??)cos??sin(600??)sin?215?1?cos600?24
??????
推广二:cos2??cos2(600??)?sin?sin(600??)?证:sin2??sin2(600??)?cos?cos(600??)
54
?cos2??cos2(600??)?sin?sin(600??)?2?cos600?52
55?24
34cos2??cos2(600??)?sin?sin(600??)?2-推广三:cos2??cos2(600??)?cos?cos(600??)?证法同推广二
34
推广四:sin2??sin(600??)?sin?sin(600??)?证:cos2??cos2(600??)?cos?cos(600??)?sin2??sin2(600??)?sin?sin(600??)?2?cos600?3434?sin2??sin2(600??)?sin?sin(600??)?推广五: 推广六:
sin2(??30?)?sin2(??30?)?cos(??30?)cos(??30?)?54
54
sin2(??60?)?sin2??cos(??60?)cos??