第1章 绪论
1.1课题研究的目的和意义
传统的汽车仪表只能为驾驶员提供汽车运行中必要而又少量的数据信息。然而随着汽车电子技术的发展,它已经渐渐不能满足现代汽车对于汽车仪表的功能需要。因为目前对汽车仪表的要求,已经不仅仅满足于单纯的完成指示工作了,而且还要求汽车仪表能够对实现对汽车各部件参数的监测,而达到控制汽车各种运行工况的目的。在未来,自动导航和定位系统会渐渐成为汽车仪表的必不可少的配置,而且多媒体等娱乐技术也会嵌入到汽车仪表当中。所以说,汽车仪表的发展趋势一定是向着全数字仪表的方向去发展的。
仪表是汽车工作状态的信息显示中心,是驾驶员与汽车进行信息交流的平台,是保证汽车安全行驶的关键零部件之一。近年来随着微电子技术、控制技术、网络通信技术的发展,CAN总线协议在车载电控系统中得到了广泛应用,因此汽车仪表可通过CAN总线直接在总线网络上读取所需的输入信号,无须专门布置传感器,从而可使汽车仪表系统得到大大简化,同时也显著降低了仪表的成本。因此,将CAN总线通信应用于汽车仪表已成为发展的必然趋势。
本设计选用16位微控制器MC9S12XS128,将仪表与微处理器、CAN总线技术融合,基于CAN总线网络的汽车仪表将代替原有的机械式仪表、电气式仪表和模拟电路电子仪表,把各参数的测量数字化,有利于和汽车其它的电子集中控制系统进行数据交换,有利于汽车集中控制系统的发展和实现,此外还使得汽车仪表的功耗、安全性、可靠性、舒适性得到更好的提高。通过调整电路参数还可适应不同种类和量程的产品需求,使得汽车仪表在结构的通用化、模块化、标准化、系列化程度大大提高,进而简化了生产工艺和制造设备。
1.2汽车仪表的发展
根据仪表的工作原理、内部结构和显示方式,汽车仪表的发展过程可以分为以下四个阶段[1]:
1.传统仪表阶段。这一阶段是从20世纪初到20世纪30年代,在此阶段中汽车开始安装各种仪表,如车速里程表、水温表、燃油表、机油压力表、电流表(电压表)和发动机转速表等,这些确定了现代汽车仪表板的基本结构。
这一阶段汽车上的传感器和仪表基本上都是机械式/电磁机械式的,是基于机械作
用力而工作的机械式仪表,所以也称机械机芯表。这种汽车仪表功能单一,仅仅显示传感器的信息以向驾驶员提供自身的状态参数,更多的是为安全性着想,信息量少,整个仪表系统的精度低,可靠性较差,体积较大,容易使驾驶员疲劳。
2.电气式仪表阶段。这一阶段从20世纪40年代到50年代,仪表功能实现不再仅仅依靠机械作用力,而是基于电测原理,即通过各类传感器将被测的非电量变换成电信号加以测量,称之为电气式仪表。
电气式仪表中常用的是磁电式仪表,其作用原理是永久磁铁在气隙中产生的磁场和可动线圈通入电流后,相互作用而产生的旋转力矩。磁电式仪表多用于测量电流和电压,加上变换器可以进行多种非电量的测量,如温度、压力等。磁电式仪表的性能稳定,读数精确,量限多,使用方便,适应于直流电路的精密测量和实验室中的标准测量仪表。但是其存在的最大缺陷就是随着环境温度的改变,测量误差变大。
3.现代电子仪表阶段,也称模拟电路电子式仪表。第3代汽车用仪表工作原理与电气式仪表基本相同,只不过是用电子器件取代原来的电气器件,其出现的时间大致在20世纪50~60年代。
随着集成电路技术突飞猛进的发展,这种仪表现在均采用汽车仪表专用集成电路,是国内汽车仪表目前主流产品,目前国内大多数汽车还是采用这种结构的仪表。经过多年的发展,其结构形式经历了动圈式机心和动磁式机心阶段,围绕着提高指示精度和指针平稳性,动磁式代替了动圈式[2]。
4.步进电机式全数字汽车仪表。全数字式汽车仪表在国外从80年代末就己经开始研究,在国内直到最近才开始对其重视。从其应用技术手段上看,还是电子技术范畴,也属于电子式仪表,但是信号传输方式己经从模拟信号变成数字信号,并朝着数字化、智能化、网络化、虚拟化方向发展。其应用特点是单片机与微处理器的广泛应用,同时软件程序在系统设计方案中占的比重也越来越大,内部程序的编写取代了外围电路的连接闭。与传统的模拟仪表相比较具有:使用寿命长、精度高、可靠性好、抗干扰性强等特点。
1.3 CAN总线技术推动汽车仪表的升级换代
随着汽车电子技术的飞速发展,将汽车工业推入了一个全新的时代。由于汽车排放、节能、安全和舒适性等使用性能不断提高,使得汽车电子控制程度也越来越高。汽车电子装置发展的一个重要趋势,是大量使用微型计算机来提高汽车的性能。目前,平均每辆车上汽车电子装置的费用约占整车成本的 20%,而且越是高档的轿车电子化程度越高。有的豪华轿车已经使用了48个单片微型计算机。汽车电子控制装置的增多,
使得连接汽车电子控制装置之间导线也变得更为复杂[3]。因此,解决现代汽车中
众多控制装置和电子仪表之间的数据交换问题,以及车载电子装置之间的数据通信问题变得越来越重要,汽车仪表技术网络化已经成为汽车工业发展的必然趋势。
为解决该问题,德国 Bosch 公司在 80 年代初开发了一种串行数据总线,CAN 总线。CAN总线是一种现场总线,通讯线可以是一根双绞线、同轴电缆或光导纤维,将各种汽车电子装置连接成为一个网络[4]。它可以有效地支持分布式控制或实时控制的串行通信网络。在这个系统中,各控制装置独立运行,控制和改善汽车某一方面的性能,同时可为其他控制装置提供数据服务。以分布式控制系统为基础构造的汽车车载电子网络系统,由于 CAN 总线具有通信速率高、可靠性好、连接方便、多主站点、通讯协议简单和性能价格比高等突出的优点。如今,CAN总线已成为汽车电子控制装置之间通信的标准总线,在汽车分布式控制系统中得到了广泛的应用。
为使不同厂家生产的零部件能在同一辆汽车中协调工作,1993 年 11 月,ISO在充分考虑工业现场环境的背景下,正式颁布了CAN国际标准,为控制器局域网标准化、规范化推广铺平了道路。同时,CAN总线得到 Motorola、Intel、Philips 等著名半导体器件生产厂家的广泛支持,他们纷纷推出了CAN接口芯片与直接带有CAN 控制器的微控制器(MCU)芯片,如 Intel 公司的82527,Philips公司的SJA1000,82C250 等。因此在接口芯片技术方面,CAN已遥遥领先于其它的现场总线,正逐步形成系列。到目前为至,世界上已拥有 20 多家 CAN总线控制器芯片生产商,110 多种 CAN 总线协议控制器芯片和集成CAN总线协议控制器的微控制器芯片。在仪表中的CAN应用,主要使用低速通讯接收汽车信息数据,可以从其他ECU接收实时的车速、转速、剩余油量以及发动机水温信号进行模拟指示;另外也可以接收如ABS、油压等报警信息提示驾驶员。CAN在汽车中另外一个重要应用是诊断(Diagnosis),有专门利用CAN通讯的诊断仪提供给维修厂,汽车各电子控制部分的诊断信息,也可以通过仪表显示。
CAN总线是一种非常适于汽车环境的汽车局域网,在现代汽车设计中,CAN已经成为了必须采用的装置,奔驰、宝马、大众、雷诺汽车都将 CAN 总线作为控制器联网的手段。在国内汽车工业中,一些引进车型,如大众的帕萨特和POLO、丰田“花冠”,福特嘉年华等中档车中 CAN总线技术得到了广泛的应用。由于我国中高级车以欧洲车型为主,因此随着CAN总线技术的飞速发展,汽车仪表会进入一个全新的时代。
1.4 研究的基本内容
1.基于LABVIEW软件的汽车仪表设计。
2.对汽车仪表的硬件部分进行设计。本文选用飞思卡尔MC9S12XS128单片机为微处理器。
3.通过C语言编程和LABVIEW编程实现两个CAN节点之间的通信以及单片机和PC机之间的通讯。
4.对所设计的系统进行试验。
第2章 CAN总线原理
2.1汽车总线
汽车总线控制是汽车发展的趋势,现代汽车的功能日新月异,而每增加一项功能都要增加相应的电气连接,使得分布车体各处的电缆趋于庞大和昂贵,且导致设计、安装、调试和维护的困难。传统的电气控制系统设计已不能满足汽车对安全性、性能和便利性的要求这种技术进展,现场总线技术的应用就是这种进展导致的必然结果。
汽车总线控制是汽车产业的发展方向,要想进行总线控制,必须从软件和硬件两个方面着手,而使用嵌入式操作系统对软硬件进行管理,不论是实时性还是从可靠性来讲,都具有无可比拟的优势。现在在汽车上使用的主要总线,CAN总线、LIN总线、FLEXRAY总线以及MOST总线[5]。
2.2 CAN总线
2.2.1 CAN总线简介
CAN是一种汽车产业中得到广泛使用的数据与控制通信网络,是一种极具强韧性的电气规范和协议,专门设计用于轿车或卡车中危险、常常无法预料的恶劣环境,而这种环境中有许多应用需要极高的可靠性和容错能力。1986年2月,RobertBosch公司在SAE年会上介绍了一种新型的串行总线系统—CAN(Controller Area Network)。根据这个CAN协议,在1987年中期,Intel开发了首个CAN控制器—82526。不久,Philips半导体也推出了82C200。这两种CAN控制器在报文过滤和控制上有许多的不同。Philips半导体的方式叫BasicCAN;Intel的方式叫FullCAN,由此后的不断发展,从而形成了FullCAN和BasicCAN两大阵营。
在20世纪90年代初,Bosch CAN规范(CAN 2.0)被提交给了国际标准化组织。经过讨论,应一些法国主要汽车商的要求,包含了吸收一些VAN网(Vehicle Area Network)的内容。并于1993年11月出版了正式的CAN国际标准ISO11898[6]。从此CAN协议被广泛的用于各类自动化控制领域。在1992年,奔驰公司首先在他们的高级轿车上使用了CAN技术。这是CAN技术在车载网络系统中的首次实际使用。
CAN网络是现场总线技术的一种,它是一种架构开放、广播式的新一代网络通信协议,称为控制器局域网现场总线,是国际上应用最广泛的现场总线之一。随着汽车电子技术的不断发展,汽车上各种电子控制单元的数目不断增加,连接导线显着增加,