的计数单位是( ),1.450含有( )个这样的计数单位。
【例5】一个小数的计数单位是0.001,它比0.01大,又比0.02小,这个小数可能是。 小数的性质:
1.小数的性质:小数的末尾添上“0”或去掉“0”,小数的大小不变。 2.易错点:①在小数点后面添上0或者去掉0,小数的大小不变。( × ) ②在一个数后面添上0或者去掉0,小数的大小不变。( × ) 【例1】把下面各数改写成小数部分是两位的小数。
5元6角=( )元 8分=( )元 1分米2厘米=( )米 12厘米=( )米 【例2】在800,8.00,0.80,80.000这几个数中,不改变原数的大小,能去掉3个0的数是( ),只能去掉2个0的数是( ),只能去掉1个0的数是( ),一个0也不能去掉的数是( )。 小数的大小比较:
先看整数部分,整数部分大的数就大;整数部分相同的,十分位上的数大的小数就大;十分位上的数相同的,再比较百分位上的数,以此类推. 【例1】比较大小:
0.76、 0.067、 0.706、 0.076、 0.67、 0.607
( )<( )<( )<( )<( )<( ) 【例2】7.□6>7.46 ,□里可填的数是( )。
【例3】大于0.5而小于1的一位小数有( )个。大于0.07而小于0.08的三位小数有( )个;
【例4】在□.□8的两个□里各填一个数字,使得到的小数分别符合下面的要求, (1)使这个小数尽可能大,这个小数是( )。 (2)使这个小数尽可能小,这个小数是( )。 (3)使这个小数尽可能接近5,这个小数是( )。 大数值的改写
1.用“万”作单位:a、从个位起,往左数四位,画“┆”,在“┆”下方点小数点;b、去掉小数末尾的“0”,添上“万”字;c、用“=”连接。
2.用“亿”作单位:a、从个位起,往左数八位,画“┆”,在“┆”下方点小数点;b、去掉小数末尾的“0”,添上“亿”字;c、用“=”连接。
【例1】把168000改写成用“万”作单位的数是( );省略万位后面的尾数是( );把995000000元改写成以“亿元”为单位的数是( ),保留一位小数是( )。 小数的近似数
1.保留整数:就是精确到个位,要看十分位上的数来决定四舍五入。 2.保留一位小数:就是精确到十分位,要看百分位上的数来决定四舍五入。 3.保留两位小数:就是精确到百分位,要看千分位上的数来决定四舍五入。 【例1】求下面各数的近似数: 1、5.064(精确到十分位) 2、3.1449(精确到百分位) 3、2.905(保留一位小数)
4、2549880000(改写成用“亿”作单位的数,再保留两位小数)
(四)小数加法和减法 小数的加法和减法
1.小数加法和减法的计算方法:要把小数点对齐,也就是相同数位对齐;从最低位算起,各位满十要进一;不够减时要向前一位借1当10再减。
2.被减数是整数时,要添上小数点,并根据减数的小数部分补上“0”后再减。 3.用竖式计算小数加、减法时,小数点末尾的“0”不能去掉,把结果写在横式中时,小数点末尾的“0”要去掉。
【例1】数字7在十位上比在十分位上表示的数大( ),小于1的最大的三位小数比最小的两位小数大( )。
【例2】3.6的计数单位是( ),它有( )个这样的单位,再加上( )个这样的计数单位就得到4.
【例3】在一个减法算式中,差是6.25,如果被减数增加0.5,减数减少0.5,则现在的差是( )。
小数加减法简便计算:
1.加法运算律:加法交换律:a+b=b+a
加法结合律:a+b+c=a+(b+c)
2.减法的性质:a-b-c=a-(b+c) a-(b-c)=a-b+c
a+b-c=a-c+b a+b-c+d=a-c+b+d
【类型一】8.43+2.87+0.57+0.13 【类型二】6.52–3.44–2.56 【类型三】9.6+6.7–9.6+3.3 【类型四】17.84–(5.84+11.79)
(五)小数乘法和除法 小数乘整数:
小数乘整数,先按整数乘法计算,再看乘数里有几位小数,就从积的右边起数出几位,点上小数点。
【例1】根据504×25=12600,直接写出下面每题的积。 5.04×25= 50.4×25= 0.504×25= 504×0.25= 504×2.5= 504×0.025= 一个数乘10、100、1000……的计算规律
1.规律:一个小数乘10、100、1000……小数点就分别向右移动一位、两位、三位……反过来.把小数的小数点向右移动一位两位、三位……就等于把这个小数乘10、100、1000 ……这就是小数点移动引起的小数大小变化规律。 注意:如果当移动小数点但末尾数位不够时,可以用添“0”的办法补足数位,过去一个整数乘10就在末尾添1个“0”,乘100就在末尾添2个“0”…… 2.单位换算:例如求0.86吨=?千克时,可以这样想:把吨数改写成千克数,是把高级单位的数改写成低级单位的数,要乘以进率,进率是1000,只要把0.86的小数点向右移动三位。 【例1】在括号里填上合适的数。
0.04×( )=4 0.978×( )=978 5.08×( )=50.8 46.5×( )=4650 0.09×( )=9 1.04×( )=104 【例2】单位换算。
2.3米=( )分米 3.004升=( )豪升
7.07千克=( )克 21平方分米9平方厘米=( )平方厘米
0.6平方米=( )平方厘米 4.3小时=( )小时( )分 一个数除以整数
除数是整数的小数除法,按整数除法算,商的小数点和被除数对齐;末尾有余数添0继续除;整数部分不够商1在个位商0。 一个数除以10、100、1000……的计算规律
1.规律:一个小数除以10、100、1000……小数点就分别向左移动一位、两位、三位……反过来,把一个数的小数点向左移动一位、两位、三位……就等于把这个小数除以lO、100 、1000……
注意:如果当移动小数点数位不够时,可以用添“0”补足数位。整数实际上就 是小数部分都是0的数,同样可以用这个规律求商。过去一个整十、整百数 除似10或100,就在末尾去掉1个“0”或2个“0”……
2.单位换算:例如求4.6分米=?米时,可以这样想:这道题是把分米数改写成米数,是把低级单位的数改写成高级单位的数,要除以进率,进率是10,只要把4.6的小数点向右移动一位。 【例1】在括号里填上合适的数。
139.8÷( )=1.398 47.8÷( )=0.478 1153÷( )=1.153 8÷1000=( ) ( )÷100=7.5 ( )÷10=0.01 【例2】单位换算
17分米=( )米 1200毫升=( )升 3050米=( )千米 350平方分米=( )平方米 710克=( )千克 5030千克=( )吨
150分=( )小时 720平方厘米=( )平方分米 小数乘以小数
1.法则:小数乘小数先按整数乘洪乘,再看乘数里一共有几位小数,就从积的右边起数出几位,点上小数点。当小数位数不够时,在前面用0补足;末尾有0的要先点小数点再化简。 2.积不变的规律:
(1)一个乘数扩大多少倍,另一个乘数缩小相应的倍数,积不变;
(2)当一个乘数不为0时,另一个乘数大于1,积就大于第一个乘数;另一个乘数小于1,积就小于第一个乘数。
【例1】根据44×21=924 ,直接写出下面几个算式的积。 4.4×2.1=( ) 0.44×0.21=( ) 0.44×2.1=( ) 4.4×0.21=( ) 【例2】在括号填入合适的数,使等式成立。
5.46×24=2.4×( ) 4.24×0.25=( )×0.424 6.4×0.53=5.3×( ) 18×0.42=0.18×( ) 【例3】比较大小 0.8×1.5○0.8;0.8×1.5○1.5。 积的近似值
求积的近似值,先计算乘法的积,根据要保留的位数看后一位上的数,用四舍五人的方法得出积的近似数。结果是近似值的,要用约等号表示。
【例1】6.9628保留整数是( );保留到十分位是( );保留两位小数是( );保留三位小数是( )
【例2】求一个小数的近似数,如果保留三位小数,要看小数第( )位。 一个数除以小数
1.被除数数位够:先划去除数的小数点,将除数变成整数,然后除数的小数点向右移动了一位,被除数的小数点也向右移动一位,划去被除数原来的小数点,再按照除数是整数的除法来计算。
2.被除数数位不够:(1)先把除数转化成整数;(2)把除数转化成整数后,被除数的小数点也要向右移动相同位数。如果位数不够,要用0补足;(3)再按除数是整数的计算方法进行计算。 3.商不变的规律:
(1)除数和被除数扩大相同倍数,商不变;
(2)当被除数不为0时,除数大于1,商就小于被除数;除数小于1,商就大于被除数。
【例1】把下面的式子变成除数是整数的除法算式
0.75÷0.25=( )÷25 0.672÷4.2=( )÷42 0.24÷4.8=( )÷48 14 ÷0.56 =( )÷( ) 76.8÷0.5=( )÷5 0.54÷0.18 =( )÷( ) 【例2】根据1664÷13=128写出下面各题的商。 16.64÷0.13 =( ) 166.4÷0.13=( )