第六章
习题 一、单项选择题
1.下面的函数关系是( )
A现代化水平与劳动生产率B圆周的长度决定于它的半径 C家庭的收入和消费的关系D亩产量与施肥量 2.相关系数r的取值范围( ) A -∞< r<+∞B -1≤r≤+1 C -1< r< +1 D 0≤r≤+1
3.年劳动生产率x(干元)和工人工资y=10+70x,这意味着年劳动生产率每提高1千元时,工人工资平均( )
A增加70元B减少70元C增加80元D减少80元
4.若要证明两变量之间线性相关程度高,则计算出的相关系数应接近于( ) A+1 B -1 C0.5 D ?1
5.回归系数和相关系数的符号是一致的,其符号均可用来判断现象( ) A线性相关还是非线性相关B正相关还是负相关 C完全相关还是不完全相关D单相关还是复相关
6.某校经济管理类的学生学习统计学的时间(x)与考试成绩(y)之间建立线性回归方程?=a+bx。经计算,方程为?=200—0.8x,该方程参数的计算( )
A a值是明显不对的 B b值是明显不对的 C a值和b值都是不对的 D a值和b值都是正确的
7.在线性相关的条件下,自变量的均方差为2,因变量均方差为5,而相关系数为0.8时,则其回归系数为:( )
A 8 B 0.32 C 2 D 12.5 8.进行相关分析,要求相关的两个变量( ) A都是随机的B都不是随机的
C一个是随机的,一个不是随机的 D随机或不随机都可以 9.下列关系中,属于正相关关系的有( ) A合理限度内,施肥量和平均单产量之间的关系 B产品产量与单位产品成本之间的关系 C商品的流通费用与销售利润之间的关系
D流通费用率与商品销售量之间的关系 10.相关分析是研究( )
A变量之间的数量关系 B变量之间的变动关系 C变量之间的相互关系的密切程度 D变量之间的因果关系 11.在回归直线yc=a+bx,b<0,则x与y之间的相关系数 ( ) A r=0 B r=l C 0 A某商店的职工人数与商品销售额之间的相关系数0.87 B流通费用水平与利润率之间的相关系数为-0.94 C商品销售额与利润率之间的相关系数为0.51 D商品销售额与流通费用水平的相关系数为-0.81 14.估计标准误差是反映( ) A平均数代表性的指标 B相关关系的指标 C回归直线方程的代表性指标 D序时平均数代表性指标 二、多项选择题 1.下列哪些现象之间的关系为相关关系( ) A家庭收入与消费支出关系B圆的面积与它的半径关系 C广告支出与商品销售额关系 D商品价格一定,商品销售与额商品销售量关系 2.相关系数表明两个变量之间的( ) A因果关系 C变异程度 D相关方向 E相关的密切程度 3.对于一元线性回归分析来说( ) A两变量之间必须明确哪个是自变量,哪个是因变量 B回归方程是据以利用自变量的给定值来估计和预测因变量的平均可能值 C可能存在着y依x和x依y的两个回归方程 D回归系数只有正号 4.可用来判断现象线性相关方向的指标有( ) A相关系数 B回归系数 C回归方程参数a D估计标准误 5.单位成本(元)依产量(千件)变化的回归方程为yc=78- 2x,这表示( ) A产量为1000件时,单位成本76元 B产量为1000件时,单位成本78元 C产量每增加1000件时,单位成本下降2元 D产量每增加1000件时,单位成本下降78元 6.估计标准误的作用是表明( ) A样本的变异程度B回归方程的代表性 C估计值与实际值的平均误差 D样本指标的代表性 7.销售额与流通费用率,在一定条件下,存在相关关系,这种相关关系属于( ) A完全相关 B单相关 C负相关 D复相关 8.在直线相关和回归分析中( ) A据同一资料,相关系数只能计算一个 B据同一资料,相关系数可以计算两个 C据同一资料,回归方程只能配合一个 D据同一资料,回归方程随自变量与因变量的确定不同,可能配合两个 9.相关系数r的数值( ) A可为正值 B可为负值 C可大于1 D可等于-1 10.从变量之间相互关系的表现形式看,相关关系可分为( ) A正相关 B负相关 C直线相关 D曲线相关 11.确定直线回归方程必须满足的条件是( ) A现象间确实存在数量上的相互依存关系 B相关系数r必须等于1 Cy与x必须同方向变化 D现象间存在着较密切的直线相关关系 12.当两个现象完全相关时,下列统计指标值可能为( ) A r=1 B r=0 C r=-1 D Sy=0 13.在直线回归分析中,确定直线回归方程的两个变量必须是( ) A一个自变量,一个因变量 B均为随机变量 C对等关系 D一个是随机变量,一个是可控制变量 14.配合直线回归方程是为了( ) A确定两个变量之间的变动关系 B用因变量推算自变量 C用自变量推算因变量D两个变量都是随机的 15.在直线回归方程中( ) A在两个变量中须确定自变量和因变量B一个回归方程只能作一种推算 C要求自变量是给定的,而因变量是随机的。D要求两个变量都是随机变量 16.相关系数与回归系数( ) A回归系数大于零则相关系数大于零 B回归系数小于零则相关系数小于零 C回归系数大于零则相关系数小于零 D回归系数小于零则相关系数大于零 三、判断题 1.相关关系和函数关系都属于完全确定性的依存关系。 ( ) 2.如果两个变量的变动方向一致,同时呈上升或下降趋势,则二者是正相关关系。( ) 3.假定变量x与y的相关系数是0.8,变量m与n的相关系数为-0.9,则x与y的相关密切程度高。( ) 4.当直线相关系数r=0时,说明变量之间不存在任何相关关系。( ) 5.相关系数r有正负、有大小,因而它反映的是两现象之间具体的数量变动关系。( ) 6.回归系数b的符号与相关系数r的符号,可以相同也可以不相同。( ) 7.在直线回归分析中,两个变量是对等的,不需要区分因变量单?襬4???4阁??耀444伀r越大,则估计标准误差 Sy值越大,从而直线回归方程的精确性越低。( ) 9.工人的技术水平提高,使得劳动生产率提高。这种关系是一种不完全的正相关关系( ) 10.回归分析和相关分析一样所分析的两个变量都一定是随机变量( ) 11.相关的两个变量,只能算出一个相关系数( ) 12.一种回归直线只能作一种推算,不能反过来进行另一种推算( ) 四、简答题 1.什么是相关关系?它和函数关系有什么不同? 2.简述相关分析和回归分析关系。 3.直线回归方程中y=a+bx,参数a、b是怎样求得的?它们代表什么意义? 4.构造直线回归模型应具备哪些条件? 5.什么是估计标准误差?其作用如何? 6.应用相关与回归分析应注意哪些问题? 五、计算题 1.有14个同类企业的生产性固定资产年平均价值和工业总产值资料如下: 企业编号 生产性固定资产价值(万 元) 1 2 3 4 5 6 7 2.8 2.8 3.0 2.9 3.4 3.9 4.0 6.7 6.9 7.2 7.3 8.4 8.8 9.1 工业总产值(万元) 8 9 10 11 12 13 14 合计 4.8 4.9 5.2 5.4 5.5 6.2 7.0 61.8 9.8 10.6 11.7 11.1 12.8 12.1 12.4 134.9 (1)计算两变量的相关系数并说明两变量之间的相关方向。 (2)建立直线回归方程,并说明其参数的经济意义。 (3)估计生产性固定资产(自变量)为10万元时,估计总产值(因变量)的可能值。 2.某公司对10户家庭进行调查,获得一下资料: 某种商品的月需求量和价格调查表 家庭号 6 7 8 9 10 家庭号 需求量(kg) 价格(元) 1 2 3 4 5 1.0 3.5 3.0 2.7 2.4 5.0 2.0 2.0 2.3 2.5 需求量(kg) 价格(元) 2.5 2.0 1.5 1.2 1.2 2.6 2.8 3.0 3.3 3.5 要求:(1)计算相关系数,分析该商品价格与需求量之间上的相关性。 (2)建立回归模型,并说明其参数的经济意义。 (3)计算估计标准误差。 (4)假定价格下降至1.5元时,以95.45%的可靠程度估计该商品的需求量。 3、为研究产品销售额与销售利润之间的关系,某公司对所属6家企业进行调查。设产品销售额x(万元),销售利润y(万元),调查资料经初步整理和计算,结果如下: ?x=225, ?y=13,?x 2=9823, ?y2=36.7, ?xy=593。 要求:(1)计算产品销售额与销售利润之间相关系数。 (2)写出配合销售利润对销售额的直线回归方程。

