物理化学练习及答案

2025-05-01

?5288???288?1?1??1??8.314??ln?ln?? J?K?0.006 J?K 293???283?2 (2) 达热平衡后抽去隔板,两种气体的体积都扩大一倍,

1??1 ?miS??Rnlnx??nRln?ln?xBB??

22??B1?? ???1?8.314?ln? J?K?1?11.53 J?K?1

4??8.人体活动和生理过程是在恒压下做广义电功的过程。问在298 K时,1mol

葡萄糖最多能提供多少能量来供给人体活动和维持生命之用。

已知在298 K时:葡萄糖的标准摩尔燃烧焓

$$?cHm(C6H12O6)??2 808 kJ?mol?1,Sm(C6H12O6)?212.0 J?K?1?mol?1,

$Sm(CO2)?213.74 J?K?1?mol?1,

$$Sm(H2O,l)?69.91 J?K?1?mol?1, Sm(O2,g)?205.14 J?K?1?mol?1

解:要计算最大的广义电功,实际是计算1 mol葡萄糖在燃烧时的摩尔反应Gibbs自由能的变化值。葡萄糖的燃烧反应为

s) C6H12O6(?6O(g)2?62C?O(g)2 6HO(l)$$?rHm(C6H12O6)??cHm(C6H12O6)??2 808 kJ?mol?1

?rS$m(C6H12O?)??S$Bm( B)6B ??6?213.74?6?69.91?6?205.14?212.0?J?K?1?mol?1

?259.06 J?K?1?mol?1

?rG$m(C6H12O?)?H$6r

?m$(C6H1OT)2?6?Sr(O) 6mCH(?2 808?298?259.06?10?3) kJ?mol?1

??2 885 kJ?mol?1

9.某化学反应,若在298 K和标准压力下进行,放热 40?00 kJ,若使该反

应通过可逆电池来完成,在与化学反应的始、终态相同时,则吸热 4?00 kJ。试计算:

$ (1) 该化学反应的?rSm。

(2) 当该反应自发进行,不做电功时的环境熵变,及隔离系统的熵变。

(3) 计算系统可能做的最大电功。

解: (1) 化学反应能自发进行,说明是一个不可逆过程,不能用它的热效应来计算熵变,要利用始终态相同的可逆电池的热效应来计算熵变,所以

QR4.00 kJ?mol?1?rSm(系统)???13.42 J?K?1?mol?1

T298 K (2) 系统在化学反应中的不可逆放热,环境可以按可逆的方式来接收,所

?Q系统40.0 kJ?mol?1 ?rSm(环)???134.2 J?K?1?mol?1

T298 K ?rSm(隔离)??rSm(系统)??rSm(环)?147.6 J?K?1?mol?1

(3) 在可逆电池中,系统可能做的最大电功在数值上就等于?rGm,所以

?rGm??rHm?T?rSm

?(?40.0?4.00) kJ?mol?1??44.0 kJ?mol?1

?44.0 kJ Wf,ma?x???Gr?m10.在 298 K的等温情况下,两个容器中间有旋塞连通,开始时一边放0.2 molO2(g),压力为 20 kPa,另一边放0.8 mol N2(g),压力为 80 kPa,打开旋塞后,两气体相互混合,设气体均为理想气体。试计算:

(1) 终态时容器中的压力。

(2) 混合过程的Q,W,?mixU,?mixS和?mixG。

(3) 如果在等温下,可逆地使气体分离,都恢复原状,计算过程的Q和W 。

解: (1) 首先计算旋塞两边容器的体积,然后得到两个容器的总体积,就能计算最终混合后的压力

V1?n1RT?0.2?8.314?298?33???m?0.025 m 3p120?10??n2RT?0.8?8.314?298?33??m?0.025 m ?3p280?10??(n1?n2)RT?1.0?8.314?298????Pa?50 kPa

V1?V20.050??V2?p终? (2) 理想气体的等温混合过程,

?mixU?0,?mixH?0,混合时没有热效应,Q?0,所以W?0。

事实上,将两种气体看作系统,没有对环境做功,所以W?0。

?miSx??R?nlnBx BB?11??? ???8.314??0.2?ln?0.8?ln?? J?K?1?5.76 J?K?1

22???? ?miGT?mSix??T? Sx??mHix?m1 ??298 K?5.76?? J?K? 716 J1 (3) QR??T?mixS??298 K?5.76 J?K?1??1 716 J ?miUx?0,W??QR?1 716 J

11. 1mol 理想气体,在273 K等温可逆地从1 000 kPa膨胀到100 kPa,试计算此过程的Q,W以及气体的ΔU,ΔH,ΔS,ΔG和ΔA 。

解: 理想气体等温可逆膨胀,ΔU = 0 ,ΔH =0,

W?nRTlnp2??5.23 kJ p1Q??W?5.23 kJ

QR5.23?103J?vapSm???19.16 J?K?1

T273 KA??T?S ?G???Wmax5.?2?3 kJ12.在300 K时,将1 mol理想气体,压力从100 kPa经等温可逆压缩到1 000

kPa,计算Q,W,?U,?H,?S,?A和?G。

解: 理想气体的等温物理变化,?U?0,?H?0

Wmax?nRTlnp2 p1 J1 00?0??43?00ln?? ??1?8.31100?? 5.74 kJ Q??Wmax??5.74 kJ

G?W?74 k ?A?? Jmax5.QR?Wmax?5.74?103??1?1????J?K??19.1 J?K ?S? ?TT300??13.1mol 单原子分子理想气体,始态温度为273 K,压力为p。分别经下列

三种可逆变化:① 恒温下压力加倍;② 恒压下体积加倍;③ 恒容下压力加倍。

分别计算其Gibbs自由能的变化值?G。假定在273 K和标准压力下,该气体的

$摩尔熵Sm?100 J?K?1?mol?1。

解: ① 这是一个等温改变压力的可逆过程,

?G??Vdp?nRTlnp1p2p2 p12?2?73?ln?1? J1 .573 kJ? ??1?8.31?4? ② 在恒压下体积加倍,则温度也加倍,T2?2T1,根据Gibbs自由能的定义式,

?G??H??(TS)

?H??CpdT?T1T25R(T2?T1) 2?2?73? J??5 ???8.31?4?2 4 kJ5. 6 7 ?S?nCp,mlnT2 T1?5? ??1??8.314?ln2? J?K?1?14.41 J?K?1

?2? S2?S1??S?114.4 J?K?1

?G??H?(T2S2?T1S1)

?5.674 ?kJ?(2?2731?14.?4 ③ 恒容下压力加倍,T2?2T1

?S?nCV,mlnT2 T1273?1?00) J?3? ??1??8.314?ln2? J?K?1?8.64 J?K?1

?2?S2?S1??S?108.6 J?K?1 所以

?G??H?(T2S2?T1S1)

?5.674 ?kJ?(2?2731?08.?6273?1?00) J14. 在 373 K 及101?325 kPa 条件下,将2 mol 水可逆蒸发为同温、同压

的蒸气。计算此过程的Q,W,?U,?H和?S。已知水的摩尔汽化焓

?vapHm?40.68 kJ?mol?1。假设水气可作为理想气体,忽略液态水的体积。

?apHm(?2解: Q??H?nv4?0.68) k?J81. 36 kJ?V)l??pVe?g?nRT W??pe?V??pe(Vg3 ??(2?8.31?437??310)? ?kJ 6.20 kJ ?U?Q?W?(81.36?6.20)? kJ 57QR?H?81.36?103??1?1??? ?S??J?K?218.1 J?K TT373??15.在一玻璃球中封入1 mol H2O(l),压力为101.3 kPa,温度为373 K。将

玻璃球放入一个真空容器中,真空容器恰好能容纳 1mol 101.3 kPa,373 K的H2O(g)。设法将小球击破,水全部汽化成101.3 kPa,373 K的水蒸气。计算Q,W,ΔU,ΔH,ΔS,ΔG,ΔA。根据计算结果说明,这一过程是自发的吗?可以用哪一个热力学性质作为判据?已知水在101.3 kPa,373 K 时的摩尔汽化焓

$。 ?vapHm(H2O,l)?40.68 kJ?mol?1。

解: H2O(l) 向真空汽化,W?0

这是一个与可逆相变始终态相同的过程,所以?G?0

$?H?n?vapHm(H2O,l)?1mol?40.68 kJ?mol?1?40.68 kJ

Q??U??H??(pV)??H??nRT

?38?18.3?14?3731?0)kJ ?(40.6?37.58 kJQR40.68 kJ?1?09.1 J??1 KT373 K ?A??U?T?S

?S? ?(37.5?840.68?)? kJ 3 A?WnRT?(?1?8.314?373)? J? 3.10 kJ或 ?max???该过程是恒温、恒容过程,故可用ΔA 作判据,因为ΔA < 0,故该过程是自发的不可逆过程。当然,也可以用?Siso作为判据,

?Ssis?QR40.68 kJ??109.1 J?K?1 T373 K

第一章 气体

一.简答题

1.如何使一个尚未破裂而被打瘪的乒乓球恢复原状?采用了什么原理? 答:将打瘪的乒乓球浸泡在热水中,使球的壁变软,球中空气受热膨胀,可使其恢复球状。采用的是气体热胀冷缩的原理。

2.在两个密封、绝热、体积相等的容器中,装有压力相等的某种理想气体。试问,这两容器中气体的温度是否相等?

答:不一定相等。根据理想气体状态方程,若物质的量相同,则温度才会相等。

3. 两个容积相同的玻璃球内充满氮气,两球中间用一根玻管相通,管中间有一汞滴将两边的气体分开。当左边球的温度为273 K,右边球的温度为293 K时,汞滴处在中间达成平衡。试问:

(1) 若将左边球的温度升高10 K,中间汞滴向哪边移动? (2) 若将两个球的温度同时都升高10 K,中间汞滴向哪边移动?

答:(1)左边球的温度升高,气体体积膨胀,推动汞滴向右边移动。 (2)两个球的温度同时都升高10 K,汞滴仍向右边移动。因为左边球的起始温度低,升高10 K所占的比例比右边的大,283/273大于303/293,所以膨胀的体积(或保持体积不变时增加的压力)左边的比右边的大。

4.在大气压力下,将沸腾的开水迅速倒入保温瓶中,达保温瓶容积的0.7左右,迅速盖上软木塞,防止保温瓶漏气,并迅速放开手。请估计会发生什么现象?

答:软木塞会崩出。这是因为保温瓶中的剩余气体被热水加热后膨胀,当与迅速蒸发的水汽的压力加在一起,大于外面压力时,就会使软木塞崩出。如果软木塞盖得太紧,甚至会使保温瓶爆炸。防止的方法是,在灌开水时不要灌得太快,且要将保温瓶灌满。

5.当某个纯的物质的气、液两相处于平衡时,不断升高平衡温度,这时处于平衡状态的气-液两相的摩尔体积将如何变化?

答:升高平衡温度,纯物质的饱和蒸汽压也升高。但由于液体的可压缩性较

小,热膨胀仍占主要地位,所以液体的摩尔体积会随着温度的升高而升高。而蒸汽易被压缩,当饱和蒸汽压变大时,气体的摩尔体积会变小。随着平衡温度的不断升高,气体与液体的摩尔体积逐渐接近。当气体的摩尔体积与液体的摩尔体积相等时,这时的温度就是临界温度。

6.Dalton分压定律的适用条件是什么?Amagat分体积定律的使用前提是什么?

答:这两个定律原则上只适用于理想气体。Dalton分压定律要在混合气体的温度和体积不变的前提下,某个组分的分压等于在该温度和体积下单独存在时的压力。Amagat分体积定律要在混合气体的温度和总压不变的前提下,某个组分的分体积等于在该温度和压力下单独存在时所占有的体积。

7.有一种气体的状态方程为 pVm?RT?bp (b为大于零的常数),试分析这种气体与理想气体有何不同?将这种气体进行真空膨胀,气体的温度会不会下降?

答:将气体的状态方程改写为 p(Vm?b)?RT,与理想气体的状态方程相比,这个状态方程只校正了体积项,未校正压力项。说明这种气体分子自身的体积不能忽略,而分子之间的相互作用力仍可以忽略不计。所以,将这种气体进行真空膨胀时,气体的温度不会下降,这一点与理想气体相同。

8.如何定义气体的临界温度和临界压力?

答:在真实气体的p?Vm图上,当气-液两相共存的线段缩成一个点时,称这点为临界点。这时的温度为临界温度,这时的压力为临界压力。在临界温度以上,无论加多大压力都不能使气体液化。

9.van der Waals气体的内压力与体积成反比,这样说是否正确?

?a?答:不正确。根据van der Waals气体的方程式,?p?2??Vm?b??RT,其

Vm??中

a被称为是内压力,而a是常数,所以内压力应该与气体体积的平方成反比。 2Vm10.当各种物质都处于临界点时,它们有哪些共同特性?

答:在临界点时,物质的气-液界面消失,液体和气体的摩尔体积相等,成为

一种既不同于液相、又不同于气相的特殊流体,称为超流体。高于临界点温度时,无论用多大压力都无法使气体液化,这时的气体就是超临界流体。

二、选择题

1.在温度、容积恒定的容器中,含有A和B两种理想气体,这时A的分压和分体积分别是pA和VA。若在容器中再加入一定量的理想气体C,问pA和VA的变化为 ( )

(A) pA和VA都变大 (B) pA和VA都变小 (C) pA不变,VA变小 (D) pA变小,VA不变

答:(C)。这种情况符合Dalton分压定律,而不符合Amagat分体积定律。 2.在温度T、容积V都恒定的容器中,含有A和B两种理想气体,它们的物质的量、分压和分体积分别为nA,pA,VA和nB,pB,VB,容器中的总压为p。试判断下列公式中哪个是正确的? ( )

(A) pAV?nART (B) pVB?(nA?nB)RT

(C) pAVA?nART (D) pBVB?nBRT

答:(A)。题目所给的等温、等容的条件是Dalton分压定律的适用条件,所以只有(A)的计算式是正确的。其余的n,p,V,T之间的关系不匹配。

3. 已知氢气的临界温度和临界压力分别为TC?33.3 K , pC?1.297?106 Pa。有一氢气钢瓶,在298 K时瓶内压力为98.0?106 Pa,这时氢气的状态为 ( )

(A) 液态 (B) 气态 (C)气-液两相平衡 (D) 无法确定

答:(B)。仍处在气态。因为温度和压力都高于临界值,所以是处在超临界区域,这时仍为气相,或称为超临界流体。在这样高的温度下,无论加多大压力,都不能使氢气液化。

4.在一个绝热的真空容器中,灌满373 K和压力为101.325 kPa的纯水,不留一点空隙,这时水的饱和蒸汽压 ( )

(A)等于零 (B)大于101.325 kPa (C)小于101.325 kPa (D)等于101.325 kPa 答:(D)。饱和蒸气压是物质的本性,与是否留有空间无关,只要温度定了,

其饱和蒸气压就有定值,查化学数据表就能得到,与水所处的环境没有关系。

5.真实气体在如下哪个条件下,可以近似作为理想气体处理?( )

(A)高温、高压 (B)低温、低压 (C)高温、低压 (D)低温、高压

答:(C)。这时分子之间的距离很大,体积很大,分子间的作用力和分子自身所占的体积都可以忽略不计。

6.在298 K时,地面上有一个直径为1 m的充了空气的球,其中压力为100 kPa。将球带至高空,温度降为253 K,球的直径胀大到3m,此时球内的压力为 ( )

(A)33.3 kPa (B)9.43 kPa (C)3.14 kPa (D)28.3 kPa

答:(C)。升高过程中,球内气体的物质的量没有改变,利用理想气体的状态方程,可以计算在高空中球内的压力。

n?p1V1pV?2 2 RT1RT2?K253r?1????3.14 k Pa?r2?3pVT100kP?a p2?112?V2T1298K8.在一个恒温、容积为2 dm3的真空容器中,依次充入温度相同、始态为100 kPa,2 dm3的N2(g)和200 kPa,1dm3的Ar(g),设两者形成理想气体混合物,则容器中的总压力为 ( ) (A)100 kPa (B)150 kPa (C)200 kPa (D)300 kPa

答:(C)。等温条件下,200 kPa,1dm3气体等于100 kPa,2dm3气体,总压为p?pA?pB=100 kPa+100 kPa=200 kPa 。

9.在298 K时,往容积都等于2 dm3并预先抽空的容器A、B中,分别灌入100 g和200 g水,当达到平衡时,两容器中的压力分别为pA和pB,两者的关系为 ( )

(A)pApB (C)pA=pB (D)无法确定

答:(C)。饱和蒸气压是物质的特性,只与温度有关。在这样的容器中,水不可能全部蒸发为气体,在气-液两相共存时,只要温度相同,它们的饱和蒸气压也应该相等。

10.在273 K,101.325 kPa时,CCl4(l)的蒸气可以近似看作为理想气体。已知CCl4(l)的摩尔质量为154g?mol?1的,则在该条件下,CCl4(l)气体的密度为 ( )

(A)6.87 g?dm?3 (B)4.52 g?dm?3 (C)6.42 g?dm?3 (D)3.44 g?dm?3

答:(A)。通常将273 K,101.325 kPa称为标准状态,在该状态下,1 mol 任意物质的气体的体积等于22.4 dm3。根据密度的定义,

??m154 g?3 ??6.87 g?dm3V22.4 dm11.在某体积恒定的容器中,装有一定量温度为300 K的气体,现在保持压力不变,要将气体赶出1/6,需要将容器加热到的温度为 ( ) (A)350 K (B)250 K (C)300 K (D)360 K

56答:(D)。保持V,p不变,n2?n1,T2?T1?360 K

6512.实际气体的压力(p)和体积(V)与理想相比,分别会发生的偏差为( )

(A)p,V都发生正偏差 (B)p,V都发生负偏差 (C)p正偏差,V负偏差 (D)p负偏差,V正偏差

答:(B)。由于实际气体的分子间有相互作用力,所以实际的压力要比理想气体的小。由于实际气体分子自身的体积不能忽略,所以能运用的体积比理想气体的小。 三.计算题

1.在两个容积均为V的烧瓶中装有氮气,烧瓶之间有细管相通,细管的体

(C) 5.70 kJ (D) ?5.70 kJ

答:(D)。理想气体等温可逆膨胀,

?G??Vdp?nRTlnp1p2p2 p1100????1?8.314?298?ln? J??5.70 kJ

1000??10.对于不做非膨胀功的隔离系统,熵判据为:

( )

(A)(dS)T,U?0 (B)(dS)p,U?0 (C)(dS)T,p?0 (D)(dS)U,V?0

答:(D)。在不做非膨胀功时,保持系统的U,V不变,即膨胀功等于零,?U?0,这就是一个隔离系统。

11.甲苯在101.3 kPa时的正常沸点为110℃,现在将1 mol甲苯放入与110℃的热源接触的真空容器中,控制容器的容积,使甲苯迅速气化为同温、同压的蒸

气。如下描述该过程的热力学变量正确的是 ( )

(A)?vapU?0 (C)?vapS?0

(B)?vapH?0 (D)?vapG?0

答:(D)。甲苯的始、终态与等温、等压可逆蒸发的始终态完全相同,所以状态函数的变化量也相同。对于等温、等压可逆相变,?vapG?0。

12. 某实际气体的状态方程为pVm?RT??p,其中?为大于零的常数,该气体经等温可逆膨胀后,其热力学能将 ( )

(A) 不变 (B) 增大 (C) 减少 (D) 不能确定

答:(A)。可以将该实际气体的状态方程改写为p(Vm??)?RT,与理想气体的状态方程相比,只对体积项进行了校正,说明该实际气体分子本身所占的体积不能忽略,但对压力项没有进行校正,说明该气体分子之间的相互作用可以忽略,这一点与理想气体相同,所以在膨胀时,不需克服分子间的引力,所以在等温膨胀时,热力学能保持不变。这种气体作绝热真空膨胀时,温度也不会改变。

13.在封闭系统中,若某过程的?A?Wmax,应满足的条件是( ) (A)等温、可逆过程 (B)等容、可逆过程 (C)等温、等压、可逆过程 (D)等温、等容、可逆过程

答:(A)。在等温、可逆过程中,Helmholtz自由能的变化值就等于对环境做的最大功,包括膨胀功和非膨胀功,这就是将Helmholtz自由能称为功函的原因。在定义Helmholtz自由能时,只引入了等温的条件。

14. 热力学第三定律也可以表示为 ( )

(A) 在0 K时,任何晶体的熵等于零 (B) 在0 K时,任何完整晶体的熵等于零

(C) 在0 ℃时,任何晶体的熵等于零

(D)在0 ℃时,任何完整晶体的熵等于零

答:(B)。完整晶体通常只有一种排列方式,根据描述熵的本质的Boltzmann公式,S?kBlnΩ,可得到,在0 K时,完整晶体的Ω?1,则熵等于零。

15.纯H2O(l)在标准压力和正常沸点时,等温、等压可逆汽化,则( ) (A) ΔvapU?=ΔvapH?,ΔvapA?=ΔvapG?,ΔvapS?> 0 (B) ΔvapU?<ΔvapH?,ΔvapA?<ΔvapG?,ΔvapS?> 0

(C) ΔvapU?>ΔvapH?,ΔvapA?>ΔvapG?,ΔvapS?< 0

(D) ΔvapU?<ΔvapH?,ΔvapA?<ΔvapG?,ΔvapS?< 0

答:(B)。任何液体在汽化时,其ΔvapS?> 0。在正常沸点等温、等压可逆汽化时,ΔvapG?=0,液体等压变为气体时,要对环境做功,所以ΔvapA?<0,ΔvapU?<ΔvapH?。

16.在 -10℃、101.325kPa下,1mol水凝结成冰的过程中,下列哪个公式仍适用

( )

(A) ?U = T?S

(B) ?S??H??G T(C) ?H = T?S + V?p (D) ?GT,p = 0

答:(B)。过冷水结冰是一个不可逆过程,但是温度保持不变,根据Gibbs自由能的定义式,在等温时,?G??H?T?S,这个公式总是可以使用的。只是?H和?S的数值要通过设计可逆过程进行计算。 三.计算题

1.热机的低温热源一般是空气或水,平均温度设为293 K。为了提高热机的效率,只有尽可能提高高温热源的温度。如果希望可逆热机的效率能达到60%,试计算这时高温热源的温度。高温热源一般是加压水蒸气,这时水蒸气将处于什么状态?已知水的临界温度为647 K。

解:根据理想的Carnot热机,可逆热机效率与两个热源温度的关系式为

??Th?Tc ThTh?293 K Th 60%?解得高温热源的温度 Th?733 K 这时加压水蒸气的温度已远远超过水的临界温度,水蒸气处于远超临界状态,压力很高,需要耐压性能很好的锅炉。事实上,实用的热机都是不可逆的,就是有这样的高温热源,实用热机的效率也远低于60%。

2.①5 mol双原子分子理想气体,在等容的条件下,由448 K冷却到298 K;② 3 mol单原子分子理想气体,在等压条件下由300 K加热到600 K,试计算这两个过程的?S。

5解:① 该过程系等容、变温过程,双原子分子理想气体的CV,m?R,所以

2 ?S?nCV,mlnT2 T1298??5?1?1 ??5??8.314 ?ln? J?K??42.4 J?K

448??2 ② 该过程系等压、变温过程,单原子分子理想气体的Cp,m??S?nCp,mlnT2 T15R 25600???1?1 ??3 ??8.314 ?ln?J?K?43.2 J?K

2300?????3.某蛋白质在323 K时变性,并达到平衡状态,即:天然蛋白质???变性

蛋白质,已知该变性过程的摩尔焓变?rHm?29.288 kJ?mol?1,,求该反应的摩尔熵变?rSm。。

解: 因为已达到平衡状态,可以认为变性过程的焓变就是可逆热效应, Q?H ?rSm?R?rm

TT29.288 kJ?mol?1?90.67 J?K?1?mol?1 ?323 K4.1 mol理想气体在等温下,分别经历如下两个过程:① 可逆膨胀过程;② 向真空膨胀过程,终态体积都是始态体积的10倍。分别计算这两个过程系统的熵变。

解:① 因该过程系理想气体等温可逆膨胀过程,所以: ?S1?nRlnV2 V110?? ??1?8.314?ln? J?K?1?19.14 J?K?1

1?? ② 虽然与(1)的膨胀方式不同,但其始、终态相同,熵是状态函数,所以该过程的熵变与①的相同,即?S2?19.14 J?K?1。

5.有2 mol单原子分子理想气体,由始态500 kPa,323 K 加热到终态1 000 kPa,373 K。试计算此气体的熵变。

解:这是一个p,V,T都改变的过程,计算熵变要分两步进行。第一步,等温可逆改变压力的过程,第二步,等压可逆改变温度的过程,熵变的计算式为 ?S?nRlnp1T?nCp,mln2 p2T1?p15T2??nRln??ln ??

p2T?21?5??5004ln?? ??2?8.31??1 0002??3?7?3l?n?3??23?1? JK ?? 5.54 ?J?1K6.在300 K时,有物质的量为n的单原子分子理想气体,从始态100 kPa,

122 dm3,反抗50 kPa的外压,等温膨胀到50 kPa。试计算:

(1)?U,?H,终态体积V2,以及如果过程是可逆过程的热QR和功WR。 (2)如果过程是不可逆过程的热QI和功WI。 (3)?Ssys,?Ssur和?Siso。

解:(1) 这是理想气体的等温膨胀,所以 ?H?0,?U?0。

p1V1100 kPa?122 dm3 n???4.89 mol ?1RT(8.314?300) J?mol V2?nRT?(4.89?8.314?300)?33 ?? m?0.244 m3?p250?10??假设理想气体进行等温可逆膨胀至终态,则 QR??WR?nRTlnp1 p2100???3 ??4.89?8.314?300?ln??10 J?8.45 kJ

50?? (2)理想气体进行等温、等外压膨胀至终态

QI??WI?pe(V2?V1)

30? ?[50?1?0.2?442?0.12?] J 6.10 kJ (3)计算系统的熵变,用假设的可逆过程的热温商计算

?SsysQR8.45?103J???28.17 J?K?1 T300 K计算环境的熵变,用系统实际不可逆过程的热的负值来计算,因为环境是个大热

源,对于系统是不可逆的热效应,但是对于环境还是可以认为是可逆的。 ?Ssur ?Si?QI6.10?103 J?????20.33 J?K?1 T300 Kso??Ssys??S

?(28.17?20.33) J?K?1?7.84 J?K?1

7.有一个绝热的刚性容器,中间用隔板将容器分为两个部分,分别充以不

同温度的N2 (g)和O2 (g),如图所示。N2 (g)和O2 (g)皆可视为理想气体。

(1) 设中间隔板是导热的,并能滑动以保持两边的压力相等。计算整个系统达到热平衡时的ΔS。

(2) 达到热平衡后,将隔板抽去,求系统的混合熵变ΔmixS。

解:(1) 首先要求出达到热平衡时的温度T 。因为两种气体的总体积未变,又是绝热容器,所以W?0,Q?0,则?U?0。已知N2(g)的温度为T1?293 K,O2 (g)的温度为T2?283 K,达到热平衡时,有

(N2)T(?T? ?U?n1CV,m1)nCV2,m(OT?)T(?2 )20因为两种气体都是双原子分子理想气体,等容摩尔热容相同,物质的量也相

等,所以有:

(T?293 K)?(T?283 K)?0

解得 T?288 K其实,对于物质的量相等、等容摩尔热容也相同的两种不同温度的气体,达热平衡时的温度就等于两者温度的平均值,T?(T1?T2)/2?288 K。

设想这个热传导是在等压可逆的情况下进行的,所以

ln ?S?n1Cp,mTT?nCln 2p,mT1T2?TT? ?nCp,m?ln?ln?

T2??T1

?nRT2nRT1?3? n?R(T2?273K)??p2??

2p1??p2

?3pT?100?273K(T2?273K)???T2?21???T2? 2p1000?1?解得 T2?174.7 K V2?nRT2?440.6?8.314?174.7?33??? m?6.40 m p2100 000??(6.?4031.?0)?m

540 kJ)100 kP?a W3??pe(V2?V1??从计算结果可知,等温可逆膨胀系统做的功最大,绝热可逆膨胀做的功比绝热不可逆膨胀做的功大,所以过程②的终态温度和体积都比过程③的小。到达相同终态压力时,绝热不可逆的T2,V2介于等温可逆与绝热可逆之间。可以推而广之,若到达相同的终态体积,则绝热不可逆的T2,p2也一定介于等温可逆与绝热可逆之间。

12.在373 K和101.325kPa压力时,有1 mol H2O(l) 可逆蒸发成同温、同压的H2O(g),已知H2O(l)的摩尔汽化焓?vapHm?40.66 kJ?mol?1。 (1)试计算该过程的Q,W和?vapUm,可以忽略液态水的体积。 (2)比较?vapHm与?vapUm的大小,并说明原因。 解:(1) Q?Qp?n?vapH m ?1 mo?l?140.66? kJ?mol 40.66 kJW??p(Vg?Vl)??pVg??nRT

??(1?8.31?4373?)?J ?vaUpm 3 ??vH?(?pV)/n??vH?nR/ Tnapmapm? ?(40.66?3.101)kJ?mol?1?37.56 kJ?mol?1

?或 ?vaUpmQp?Wn?(40.6?63.101)kJ?37.56 ?kJ?1m ol1 mol(2)?vapHm>?vapUm。因为水在等温、等压的蒸发过程中,吸收的热量一部分用于对外做膨胀功,一部分用于克服分子间引力,增加分子间距离,提高热力学能。而?vapUm仅用于克服分子间引力,增加分子间距离,所以?vapHm的值要比?vapUm大。

13.在300 K时,将1.0 mol的Zn(s)溶于过量的稀盐酸中。若反应分别在开口的烧杯和密封的容器中进行。哪种情况放热较多?计算两个热效应的差值。

解:反应的方程式为 Zn(s)?2HCl(aq)?ZnCl2(aq)?H2(g)

在开口烧杯中进行时,是个等压过程,热效应为Qp,在密封容器中进行时热效应为QV。后者因为不做膨胀功,所以放的热较多。两个热效应的差值为: Qp?QV??nRT

?1 mol?8.314 J?mol?1?K?1?300 K?2 494 J

14.在373 K和101.325 kPa的条件下,将1 gH2O(l)经:① 等温、等压可逆汽化;②在恒温373K的真空箱中突然汽化,都变为同温、同压的H2O(g)。分别计算这两种过程的Q、W、?U和?H的值。已知水的汽化热为2 259 J?g?1,可以忽略液态水的体积。

1?2 25?9? J?g解:① ?H?Qp?1 g2 259 J W1??p?V?l??pVg?Vg??n RT ??1g?8.314J?K?1?mol?1?373K??172.3 J ?118g?mol?U?Q?W?2 087 J

② 因为与①题中的始、终态相同,所以状态函数的变量也相同,?U、?H的值与(1)中的相同。但是Q和W不同,由于是真空蒸发,外压为零,所以

W2??pe?V?0

真空蒸发的热效应已不是等压热效应,Q2??H,而可以等于等容热效应,所以

Q2??U?2 087 J15.在298 K时,有酯化反应

(COOH)2(s)+2CH3OH(l)=(COOCH3)2(s)+2H2O(l),计算酯化反应的标准摩尔反应

$$((COOH)2,s)??120.2 kJ?mol?1,焓变?rHm。已知:?cHm$$?cHm(CH3OH,l)??726.5 kJ?mol?1,?cHm((COOCH3)2,s)??1 678 kJ?mol?1。

解:利用标准摩尔燃烧焓来计算标准摩尔反应焓变

? ?rH???)???m(298 KBHCBm (B)???120.2?2?(?726.5)?1678?kJ?mol?1?104.8 kJ?mol?1

16.在298 K时,计算反应2C(s)+2H2(g)+O2(g)=CH3COOH(l) 的标准摩尔反

$应焓变?rHm。已知下列反应在298 K时的标准摩尔反应焓变分别为:

$(1)??870.3 kJ?mol?1,(1) CH3COOH(l)+2O2(g)=2CO2(g)+2H2O(l) ?rHm $(2)??393.5 kJ?mol?1 (2) C(s)+O2(g)=CO2(g) ?rHm (3) H2(g)+

1$(3)??285.8 kJ?mol?1 O2(g)=H2O(l) ?rHm2解:所求反应是由2?(2)?2?(3)?(1)组成,根据Hess定律,

??rHm(298 K)??2?(?393.5)?2?(?285.8)?(?870.3)?kJ?mol?1

??488.3 kJ?mol?1

17.在298 K时,C2H5OH (l) 的标准摩尔燃烧焓为?1 367 kJ?mol?1,CO2(g) 和H2O(l) 的标准摩尔生成焓分别为?393.5 kJ?mol?1和?285.8 kJ?mol?1,求 298 K 时,C2H5OH (l) 的标准摩尔生成焓。

解:C2H5OH (l)的燃烧反应为

?l) C2H5OH(32O?(g)22C?O(g2) 3HO(l)O2(g)是助燃剂,CO2(g)和H2O(l)是指定的燃烧最终产物,由于在燃烧反应式中,

它们的标准摩尔燃烧焓都等于零,所以C2H5OH (l) 的标准摩尔燃烧焓,也就是

????CHm(C2H5OH,l)。根据用标准摩尔生该反应的标准摩尔反应焓变,即 ?rHm成焓计算标准摩尔反应焓变的公式,式中C2H5OH (l) 的标准摩尔生成焓是唯一

的未知数,即可求出。

???2?H(CO,g?)?3H ?rH?mfm2fm?(HO?,?lH)2fm(2C5 HOH,l)?l)?H2 ?fH?m(C2H5OH,?fm(C?,?gH)?2Of3m2?(?H?HO ,l)l3.5?)?3(?28?5. ?fH??)?2?(39??8)m(C2H5OH,?1(??1 3 67)kJmol ?? ol277.4 k?J?1m18. 已知 298 K 时,CH4(g),CO2(g),H2O(l) 的标准摩尔生成焓分别为

?74.8 kJ?mol?1,?393.5 kJ?mol?1和?285.8 kJ?mol?1,请计算298 K时CH4(g)的

标准摩尔燃烧焓。

解:CH4(g)的燃烧反应为CH4(g)?2O2(g)?2H2O(l)?CO2(g),CH4(g)的标准摩尔燃烧焓,就等于该燃烧反应的标准摩尔反应焓变。根据用标准摩尔生成焓计算标准摩尔反应焓变的公式,

???cHm(CH4,g)??rHm

????2?fHm(H2O,l)??fHm(CO2,g)??fHm(CH4,g)

??2?(?285.8)?(?393.5)?(?74.8)?kJ?mol?1

??890.3 kJ?mol?1

19. 使用弹式量热计,测定正庚烷的标准摩尔燃烧焓。准确称取正庚烷样品0.50 g ,放入平均温度为298 K的弹式量热计中,充入氧气,并用电阻丝引燃。由于正庚烷的燃烧,使温度上升2.94 K,已知弹式量热计的本身及附件的平均热容为?CV??8.177 kJ?K?1。试计算在298 K 时,正庚烷的标准摩尔燃烧焓。已知正庚烷的摩尔质量为 100.2 g?mol?1。

解:在弹式量热计中测定的热是等容热,0.5 g正庚烷燃烧后放出的等容热为:

QV???CV??T??8.177 kJ?K?1?2.94 K??24.04 kJ

正庚烷的燃烧反应为:

C7H16(l?)112O?(g)7O(g2)2C?

8HO(l)1 mol正庚烷的等容燃烧热,就等于摩尔热力学能的变化,

??cUm??24.04 kJ?1??4 818 kJ?mol ?10.50 g/100.2 g?molB???cHm??cUm???BRT

??4 818 kJ?mol?1?[(7?11)?8.314?298] J?mol?1 ?? ol4 828 k?J?1m20.在标准压力和298 K时,H2(g)与O2(g)的反应为

1H2(g)?O2(g)?H2O(g)。设参与反应的物质均可以作为理想气体处理,已知

2??fHm(H2O,g)??241.82 kJ?mol?1 ,它们的标准等压摩尔热容(设与温度无关)?1?1??1?1分别为:C?p,m(H2,g)?28.82 J?K?mol ,Cp,m(O2,g)?29.36 J?K?mol ,?1?1C?p,m(H2O,g)?33.58 J?K?mol 。试计算:

?(298K),和热力学能变化(1)在298 K时,标准摩尔反应焓变?rHm??rUm(298K);

?(498K)。 (2)在498 K时的标准摩尔反应焓变?rHm解:(1)根据反应方程式,用已知的标准摩尔生成焓计算反应的标准摩尔反应焓变。因为稳定单质的标准摩尔生成焓都等于零,所以

? ?rH??)???m(298KBHfBm 8K)(29?1)?241.82? ?kJ ?? mol fHm(H2O,g??)?rH?m(298?K?)pV ( ?rU?m(298K? ??)RT??B rHm(298K?B) ?[(?241.82?8.314?298?(1?1?0.5)?10?3) kJ?mol?1 ?? ol 240.58 ?kJ?1m(2)根据反应方程式,标准等压摩尔热容的差值为

??BB?1?1C?p,m(B)?(33.58?28.82?0.5?29.36 )J?K?mol

??9.92 J?K?1?mol?1 ?rH?)??rH?m(T)??m(T21?B?pBC(B)T(?2 T),m,m? ?rH??)?rH?m(298?K?)C?m(498KBpBT(B?) (2T)

?[?241.82?9.92?(498?298)?10?3] kJ?mol?1 ?? ol243.80 ?kJ?1m

第三章 热力学第二定律

一.简答题

1.自发过程一定是不可逆的,所以不可逆过程一定是自发的。这说法对吗? 答: 前半句是对的,但后半句是错的。因为不可逆过程不一定是自发的,如不可逆压缩过程就是一个不自发的过程。

2.空调、冰箱不是可以把热从低温热源吸出、放给高温热源吗,这是否与热力学第二定律矛盾呢?

答: 不矛盾。Claususe说的是:“不可能把热从低温物体传到高温物体,而不引起其他变化”。而冷冻机系列,把热从低温物体传到了高温物体,环境做了电功,却得到了热。而热变为功是个不可逆过程,所以环境发生了变化。

3.能否说系统达平衡时熵值最大,Gibbs自由能最小?

答:不能一概而论,这样说要有前提,即:绝热系统或隔离系统达平衡时,熵值最大。等温、等压、不做非膨胀功,系统达平衡时,Gibbs自由能最小。也就是说,使用判据时一定要符合判据所要求的适用条件。

4.某系统从始态出发,经一个绝热不可逆过程到达终态。为了计算熵值,能否设计一个绝热可逆过程来计算?

答:不可能。若从同一始态出发,绝热可逆和绝热不可逆两个过程的终态绝不会相同。反之,若有相同的终态,两个过程绝不会有相同的始态。所以只有设计一个除绝热以外的其他可逆过程,才能有相同的始、终态。

5.对处于绝热钢瓶中的气体,进行不可逆压缩,这过程的熵变一定大于零,这说法对吗?

答:对。因为是绝热系统,凡是进行一个不可逆过程,熵值一定增大,这就是熵增加原理。处于绝热钢瓶中的气体,虽然被压缩后体积会减小,但是它的温度会升高,总的熵值一定增大。

6.相变过程的熵变,可以用公式?S??H来计算,这说法对吗? T答:不对,至少不完整。一定要强调是等温、等压可逆相变,?H是可逆相变时焓的变化值(?H?Qp,R),T是可逆相变的温度。

7.是否Cp,m恒大于CV,m?

答:对气体和绝大部分物质是如此。但有例外,4摄氏度时的水,它的Cp,m等于CV,m。

8.将压力为101.3 kPa,温度为268.2 K的过冷液态苯,凝固成同温、同压的固态苯。已知苯的凝固点温度为278.7 K,如何设计可逆过程?

答:可以用等压、可逆变温的方法,绕到苯的凝固点278.7 K,设计的可逆

C6H6(l,268.2 K,101.3 kPa)?C6H6(s,268.2 K,101.3 kPa) (1) ↓等压可逆升温 (3) ↑等压可逆降温(2)???C6H6(l,278.7 K,101.3 kPa)?????C6H6(s,278.7 K,101.3 kPa)过程如下:

分别计算(1),(2)和(3),三个可逆过程的热力学函数的变化值,加和就等于过冷液态苯凝固这个不可逆过程的热力学函数的变化值。用的就是状态函数的性质:异途同归,值变相等。

9.在下列过程中,Q ,W,ΔU,ΔH,ΔS,ΔG和ΔA的数值,哪些等于零?哪些函数的值相等?

(1) 理想气体真空膨胀 (2) 实际气体绝热可逆膨胀 (3) 水在正常凝固点时结成冰 (4) 理想气体等温可逆膨胀 (5) H2(g)和O2(g)在绝热钢瓶中生成水

(6) 在等温、等压且不做非膨胀功的条件下,下列化学反应达成平衡

??? H2(g)?Cl2(g)???2HCl(g)

答:(1) Q?W??U??,?G??A H0?(2) QR??S? 0, ?U?WH?QA?(3) ?G?0, ? P, ?eWH?0, Q =?W, ?G? ?A(4) ?U??e(5) ?U?Q V= We?0(6) ?rGm?0,?rAm?Wmax?0,?rUm??rHm

10. 298 K时,一个箱子的一边是1 mol N2 (100 kPa),另一边是2 mol N2 (200 kPa ),中间用隔板分开。问在298 K时,抽去隔板后的熵变值如何计算?

答:设想隔板可以活动,平衡时隔板两边气体的压力均为150 kPa。在等温、等压下,相同的理想气体混合时的熵变等于零,即?mixS?0。只要计算气体从始态压力到终态压力的熵变, ?S??nRlnBp1 p2 ?1 mo?lR?100ln?1502? mR?ol200?ln150?1 41 JK?1.11. 指出下列理想气体,在等温混合过程中的熵变计算式。 (1) 1 mol N2(g,1V)?1 mol N2(g,1V)?2 mol N2(g,1V)

(2) 1 mol N2(g,1V)?1 mol Ar(g,1V)?(1 mol N2?1 mol Ar)(g,1V) (3) 1 mol N2(g,1V)?1 mol N2(g,1V)?2 mol N2(g,2V)

1答: (1) ?mixS?2Rln。因为相同气体混合,总体积没变,相当于每个气

2体的体积都缩小了一半。

(2) ?mixS?0。因为理想气体不考虑分子自身的体积,两种气体的活动范围都没有改变。

(3) ?mixS?0。因为同类气体混合,体积是原来体积的加和,气体的活动范围都没有改变,仅是加和而已。

12.四个热力学基本公式适用的条件是什么? 是否一定要可逆过程? 答: 适用于组成不变的均相封闭系统,不作非膨胀功的一切过程。不一定是可逆过程。因为在公式推导时,虽然用了Q?TdS的关系式,这公式只有对可逆过程成立,但是由于基本公式中计算的是状态函数的变化量,对于不可逆过程,可以设计一个始终态相同的可逆过程进行运算。 二.选择题

1.理想气体在等温条件下反抗恒定外压膨胀,该变化过程中系统的熵变?Ssys及环境的熵变?Ssur应为: ( )

(A) ?Ssys>0,?Ssur=0 (B) ?Ssys<0,?Ssur=0 (C) ?Ssys>0,?Ssur<0 (D) ?Ssys<0,?Ssur>0 答:(C)。理想气体等温膨胀,体积增加,熵增加,但要从环境吸热,故环境的熵减少。

2.在绝热条件下,用大于气缸内的压力迅速推动活塞压缩气体,气体的熵变:( )

(A) 大于零 (B) 小于零

(C) 等于零 (D) 不能确定

答:(A)。封闭系统的绝热不可逆过程,熵增加,这就是熵增加原理。因为气体的体积虽然变小了,但是它的温度升高了,总的熵一定是增加的。

3.H2(g)和O2(g)在绝热钢瓶中反应生成水的过程( )

(A) ΔH = 0 (B) ΔU = 0 (C) ΔS = 0 (D) ΔG = 0

答:(B)。因为钢瓶是恒容的,并与外界无功和热的交换,所以能量守衡,ΔU = 0。

4.在273.15 K和101 325 Pa条件下,水凝结为冰,系统的下列热力学量中,何者一定为零? ( )

(A) ΔU (B) ΔH (C) ΔS (D) ΔG

答:(D)。等温、等压、不作非膨胀功的可逆相变,Gibbs自由能等于零。

5.一定量的理想气体向真空作绝热膨胀,体积从V1变到V2,则熵变的计算公式为

( )

(A)?S?0 (B)?S?nRlnV2 V1(C)?S?nRlnp2 p1 (D)无法计算

答:(B)。虽然真空绝热膨胀是一个不可逆过程,但是理想气体的温度不变,可以设计一个始、终态相同的等温可逆膨胀过程,用(B)式来计算熵变。

6.在对N2(g)和O2(g)的混合气体进行绝热可逆压缩,系统的热力学函数变化值在下列结论中正确的是: ( )

(A) ΔU = 0 (B) ΔA = 0 (C) ΔS = 0 (D) ΔG = 0

答:(C)。绝热可逆过程是恒熵过程,由于QR= 0,所以ΔS = 0。

7. 1 mol 单原子分子理想气体,温度由T1变到T2时,等压可逆过程,系统的熵变为?Sp,等容可逆过程,系统的熵变为?SV,两着之比?Sp∶?SV等于:( )

(A) 1∶1 (C) 3 ∶5

(B) 2∶1 (D) 5∶3

T2,等容、变温可逆过程,T1答:(D)。等压、变温可逆过程,?Sp?nCp,mln?SV?nCV,mlnT23。现在温度区间相同,单原子分子理想气体的CV,m?R,T12Cp,m?5∶3,相当于摩尔等压热容与摩尔等容热容之比。 R,所以,?Sp∶?SV?528.1 g纯的H2O(l)在 373 K,101.3 kPa的条件下,可逆汽化为同温同压的

H2O(g),热力学函数的变量为 ΔU1,ΔH1和 ΔG1;现把1 g纯的H2O(l)(温度、

压力同上),放在373 K 的恒温真空箱中,控制体积,使系统终态的蒸气压也为101.3 kPa,这时热力学函数变量为ΔU2,ΔH2和 ΔG2。这两组热力学函数的关系为: ( )

(A) ΔU1> ΔU2, ΔH1> ΔH2, ΔG1> ΔG2 (B) ΔU1< ΔU2, ΔH1< ΔH2, ΔG1< ΔG2 (C) ΔU1= ΔU2, ΔH1= ΔH2, ΔG1= ΔG2

(D) ΔU1= ΔU2, ΔH1> ΔH2, ΔG1= ΔG2 答:(C)。系统的始态与终态都相同,所有热力学状态函数的变量也都相同,与变化途径无关。

9. 298 K时,1 mol 理想气体等温可逆膨胀,压力从1 000 kPa变到100 kPa,系统的Gibbs自由能的变化值为 ( ) (A) 0.04 kJ (B) ?12.4 kJ


物理化学练习及答案.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:高考英语一轮复习Unit3Traveljournal导学案新人教版必修1

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219