7新课标人教版七年级数学下学期教案全册

2025-04-29

人教版七年级下学期全册教案

5.1相交线

[教学目标]

1. 通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力 2. 在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用

它解决一些简单问题 [教学重点与难点]

重点:邻补角与对顶角的概念.对顶角性质与应用 难点:理解对顶角相等的性质的探索 [教学设计]

一.创设情境 激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角 在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。 观察剪刀剪布的过程,引入两条相交直线所成的角。 学生观察、思考、回答问题

教师出示一块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?

教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题, 二.认识邻补角和对顶角,探索对顶角性质

1.学生画直线AB、CD相交于点O,并说出图中4个角,两两相配 共能组成几对角?根据不同的位置怎么将它们分类? 学生思考并在小组内交流,全班交流。

当学生直观地感知角有“相邻”、“对顶”关系时,教师引导学生用 几何语言准确表达

?AOC与?AOD有一条公共边OA,它们的另一边互为反向延长线;

?AOC与?BOD有公共的顶点O,而且?AOC的两边分别是?BOD两边的反向延长线

2.学生用量角器分别量一量各角的度数,发现各类角的度数有什么关系? (学生得出结论:相邻关系的两个角互补,对顶的两个角相等) 3学生根据观察和度量完成下表: 两条直线相交 所形成的角 分类 位置关系 数量关系 教师提问:如果改变?AOC的大小,会改变它与其它角的位置关系和数量关系吗? 4.概括形成邻补角、对顶角概念和对顶角的性质 三.初步应用 练习: 下列说法对不对

(1) 邻补角可以看成是平角被过它顶点的一条射线分成的两个角 (2) 邻补角是互补的两个角,互补的两个角是邻补角 (3) 对顶角相等,相等的两个角是对顶角

学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象

四.巩固运用例题:如图,直线a,b相交,?1?40,求?2,?3,?4的度数。

[巩固练习](教科书5页练习)已知,如图,?AOC?35?,?COF?80?,求:?AOD和?DOF的度数 [小结]

邻补角、对顶角.

? [作业]课本P9-1,2P10-7,8 [备选题]

一判断题:

如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那么它们互为邻补角( ) 两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互补( ) 二填空题

1如图,直线AB、CD、EF相交于点O,?AOE的对顶角是 ,

?COF的邻补角是 ?若?AOC:?AOE=2:3,?EOD?130,则?BOC=

2如图,直线AB、CD相交于点O

?COE??FOB?90?,?AOC?30?则?EOF?

5.1.2 垂线

[教学目标]

1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。 2.掌握点到直线的距离的概念,并会度量点到直线的距离。 3.掌握垂线的性质,并会利用所学知识进行简单的推理。 [教学重点与难点]

1.教学重点:垂线的定义及性质。 2.教学难点:垂线的画法。 [教学过程设计] 一. 复习提问:

1、叙述邻补角及对顶角的定义。 2、对顶角有怎样的性质。 二.新课: 引言:

前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。

C(一)垂线的定义

当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。

如图,直线AB、CD互相垂直,记作AB?CD,垂足为O。 AOB

D

请同学举出日常生活中,两条直线互相垂直的实例。 注意:

1、 如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。

2、掌握如下的推理过程:(如上图)

?AB?CD(已知),

??AOC??COB??BOD??AOD?90?(垂直定义).反之,

??AOC?90?(已知)

?AB?CD(垂直定义)

(二)垂线的画法 探究:

1、用三角尺或量角器画已知直线l的垂线,这样的垂线能画出几条? 2、经过直线l上一点A画l的垂线,这样的垂线能画出几条? 3、经过直线l外一点B画l的垂线,这样的垂线能画出几条? 画法:

让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。

注意:如过一点画射线或线段的垂线,是指画它们所在直线的垂线,垂足有时在延长线上。 (三)垂线的性质

经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即: 性质1 过一点有且只有一条直线与已知直线垂直。 练习:教材第7页 P探究:

如图,连接直线l外一点P与直线l上各点O, A,B,C,??,其中PO?l(我们称PO为点P到直线 l的垂线段)。比较线段PO、PA、PB、PC??的长短,这些线段

ACBO中,哪一条最短?

性质2 连接直线外一点与直线上各点的所有线段中,垂线段最短。 简单说成: 垂线段最短。

(四)点到直线的距离

直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。 如上图,PO的长度叫做点 P到直线l的距离。

例1 如图,?BAC?90?,AD?BC,垂足为D,则下列结论:

(1)AB与AC互相垂直;

(2)AD与AC互相垂直;

(3)点C到AB的垂线段是线段AB; (4)点A到BC的距离是线段AD;

(5)线段AB的长度是点B到AC的距离; (6)线段AB是点B到AC的距离。

ABDCFDAOCEB

其中正确的有( ) A. 1个 B. 2个 C. 3个 D. 4个 解:A

例2 如图,直线AB,CD相交于点O,

OE?CD,OF?AB,?DOF?65?,求?BOE和?AOC的度数。

解:略

例3 如图,一辆汽车在直线形公路AB上由A 向B行驶,M,N分别是位于公路两侧的村庄, 设汽车行驶到点P位置时,距离村庄M最近,

行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。

解:如图所示,过M,N两点分别作MP?AB,NQ?AB,垂足分别为P,Q,则点P,Q即为所求。练习:

1. 如图,已知?ABC中,?BAC为钝角。

C(1)画出点C到AB的垂线段;(2)过A点画BC的垂线;

(3)点B到AC的距离是多少?AB2.教材第9页3、4

教材第10页9、10、11、12 小结:

1. 要掌握好垂线、垂线段、点到直线的距离这几个概念;

2. 要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形; 3. 垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。 作业:教材第9页5、6.

5.2.1 平行线

[教学目标]

1.理解平行线的意义,了解同一平面内两条直线的位置关系; 2.理解并掌握平行公理及其推论的内容;

3.会根据几何语句画图,会用直尺和三角板画平行线;

4.了解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角; 4.了解平行线在实际生活中的应用,能举例加以说明. [教学重点与难点]

1.教学重点:平行线的概念与平行公理; 2.教学难点:对平行公理的理解.

[教学过程] 一、复习提问

相交线是如何定义的? 二、新课引入

平面内两条直线的位置关系除平行外,还有哪些呢?

制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念. 三、同一平面内两条直线的位置关系

1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线a与b平行,记作a∥b. (画出图形)

2.同一平面内两条直线的位置关系有两种:(1)相交;(2)平行. 3.对平行线概念的理解:

两个关键:一是“在同一个平面内”(举例说明);二是“不相交”. 一个前提:对两条直线而言. 4.平行线的画法

平行线的画法是几何画图的基本技能之一,在以后的学习中,会经常遇到画平行线的问题.方法为:一“落”(三角板的一边落在已知直线上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线). 四、平行公理

1.利用前面的教具,说明“过直线外一点有且只有一条直线与已知直线平行”. 2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行. 提问垂线的性质,并进行比较.

3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.即:如果b∥a,c∥a,那么b∥c. 五、三线八角

由前面的教具演示引出.

如图,直线a,b被直线c所截,形成的8个角中,其中同位角有4对,内错角有2对,同旁内角有2对.

六、课堂练习

1.在同一平面内,两条直线可能的位置关系是 .

2.在同一平面内,三条直线的交点个数可能是 .

3.下列说法正确的是( )

A.经过一点有且只有一条直线与已知直线平行 B.经过一点有无数条直线与已知直线平行 C.经过一点有一条直线与已知直线平行

D.经过直线外一点有且只有一条直线与已知直线平行

4.若∠?与∠?是同旁内角,且∠?=50°,则∠?的度数是( ) A.50° B.130° C.50°或130° D.不能确定

5.下列命题:(1)长方形的对边所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是( )

A.1 B.2 C.3 D.4 6.如图,直线AB,CD被DE所截,则∠1和 是同位角,∠1和 是内错角,∠1和 是同旁内角.如果∠5=∠1,那么∠1 ∠3. 七、小结

让学生独立总结本节内容,叙述本节的概念和结论. 八、课后作业

1.教材P19第7题;

2.画图说明在同一平面内三条直线的位置关系及交点情况. [补充内容]

1.试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平行.

2.在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的, 试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)

5.2.2 直线平行的条件 (第2课时)

一.教学目标

(1)使学生进一步理解并掌握判定两条直线平行的方法; (2)了解简单的逻辑推理过程. 二.教学重点与难点

重点:判定两条直线平行方法的应用; 难点:简单的逻辑推理过程. 三.教学过程 复习提问:

1.判定两条直线平行的方法有哪些? 2.如图(1)

(1)如果∠1=∠4,根据_________________,可得AB∥CD; (2)如果∠1=∠2,根据_________________,可得AB∥CD; (3)如果∠1+∠3=1800,根据______________,可得AB∥CD .

E

A D

4 A B

2 3

1 1 D C

B C

F 如图(2) 如图(1)

3.如图(2)

(1) 如果∠1=∠D,那么______∥________; (2) 如果∠1=∠B,那么______∥________;

(3) 如果∠A+∠B=1800,那么______∥________; (4) 如果∠A+∠D=1800,那么______∥________;

新课:

例1 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什

么?

分析:垂直总与直角联系在一起,我们学过哪些判断两条直线平行的方法?

答:这两条直线平行. b c

如图所示

理由如下: ∵b⊥a,c⊥a

0

∴∠1=∠2=90(垂直定义) ┐1 ┐2

a ∴b∥c(同位角相等,两直线平行)

思考:

这是小明同学自己制作的英语抄写纸的一部分,其中的横格线互相平行吗?你有多少种判别方法?

例2 如图所示,∠1=∠2,∠BAC=200,∠ACF=800.

(1)求∠2的度数;

(2)FC与AD平行吗?为什么?

E

A 1 2

F

B C D 巩固练习

1.教科书19页练习

2. 如图所示,如果∠1=470,∠2=1330,∠D=470,那么BC与DE平行吗?AB与CD平行吗?

A

2

1 B C

D B= FCB E 3.如图所示,已知∠D=∠A ,∠∠,试问ED与CF平行吗? E D

C F

A B

4.如图,∠1=∠2,∠2=∠3,∠3+∠4=1800,找出图中互相平行的直线. n m

l 2

1 3 5 a 4

b 题 作业:教科书19页习题5.2第7、8

5.2.2直线平行的条件(一)

[教学目标]

3. 借助用直尺和三角板画平行线的过程,,得出直线平行的条

件.

4. 会用直线平行的条件来判定直线平行. 5. 激发学生学习数学的兴趣.

[教学重点与难点]

重点: 理解直线平行的条件. 难点: 直线平行的条件的应用[教学设计]提问 复习题:

1.如图,已知四条直线AB、AC、DE、FG

(1)∠1与∠2是直线_____和直线____被直线________所截而成的________角.

(2) ∠3与∠2是直线_____和直线____被直线________所截而成的________角. (3) ∠5与∠6是直线_____和直线____被直线________所截而成的________角. (4) ∠4与∠7是直线_____和直线____被直线________所截而成的________角. (5) ∠8与∠2是直线_____和直线____被直线________所截而成的________角.

2.下面说法中正确的是 ( ). (1) 在同一平面内,两条直线的位置关系有相交、平行、垂直三种 (2) 在同一平面内, 不垂直的两条直线必平行 (3) 在同一平面内, 不平行的两条直线必垂直 (4) 在同一平面内,不相交的两条直线一定不垂直

3.如果 a∥ b ,b ∥c ,那么_______,理由是_____________________.

导言:

上节课我们学习了平行线的意义, 在同一平面内,两条直线的位置关系,以及平行公理, 在此基础上,我们再来研究直线平行的条件. 新课:

直线平行的条件

演示用直尺和三角板画平行线的过程,

如果∠4+∠2=180°, a∥ b吗?

三种方法可以简单地说成:

例题 已知:如图,直线AB ,CD,EF被MN所截, ∠1=∠2, ∠3+∠1=180°,试说明CD ∥EF.

解:因为∠1=∠2, 所以 AB ∥CD. 又因为 ∠3+∠1=180°, 所以 AB ∥ EF.

从而 CD ∥EF (为什么?).

课堂练习:

1.下列判断正确的是 ( ). A. 因为∠1和∠2是同旁内角,所以∠1+∠2=180° B. 因为∠1和∠2是内错角,所以∠1=∠2 C. 因为∠1和∠2是同位角,所以∠1=∠2 D. 因为∠1和∠2是补角,所以∠1+∠2=180°

2.如图:(1) 已知∠1=65°, ∠2=65°,那么DE与 BC平行吗?为什么? (2)如果∠1=65°, ∠3=115°,那么AB与DF平行吗? 为什么?

(3) )如果∠4=60°, ∠2=65°,那么DE与BC平行吗? 为什么? 3.

4.如图所示:

(1)如果已知∠1=∠3,则可判定AB∥______,其理由是__________________;

(2)如果已知∠4+∠5=180°,则可判定___________∥______,其理由是__________________; (3)如果已知∠1+∠2=180°,则可判定___________∥______,其理由是__________________; (4)如果已知∠5+∠2=180°那么根据对顶角相等有∠2=__,

因此可知∠4+∠5= ____,所以可确定 ___________∥______,其理由是__________________; (5)如果已知∠1=∠6,则可判定_____∥______,其理由是__________________.

4

图 第 5 题图

5.如图,(1)如果∠1=________,那么DE∥ AC; (2) 如果∠1=________,那么EF∥ BC;

(3)如果∠FED+ ∠________=180°,那么AC∥ED; (4) 如果∠2+ ∠________=180°,那么AB∥DF.

6.

7.

课后作业:习题5.2 第1,2,4题. 补充练习:

已知:如图,AB ∥CD,EF分别交 AB、CD 于 E、F,EG平分∠ AEF ,

FH平分∠ EFD EG与 FH平行吗?为什么?

§5.3平行线的性质(一)

教学目标

1.使学生理解平行线的性质和判定的区别.

2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.

重点难点

重点:平行线的三个性质.

难点:平行线的三个性质和怎样区分性质和判定. 关键:能结合图形用符号语言表示平行线的三条性质. 教学过程 一、复习

1.如何用同位角、内错角、同旁内角来判定两条直线是否平行? 2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?

二、新授

1.实验观察,发现平行线第一个性质

请学生画出下图进行实验观察.

设l1∥l2,l3与它们相交,请度量∠1和∠2的大小,你能发现什么关系?

请同学们再作出直线l4,再度量一下∠3和∠4的大小,你还能发现它们有什么关系?

平行线性质1(公理):两直线平行,同位角相等. 2.演绎推理,发现平行线的其它性质

(1)已知:如图,直线AB,CD被直线EF所截,AB∥CD.

求证:∠1= ∠2.

(2)已知:如图2-64,直线AB,CD被直线EF所截,AB∥CD.

求证:∠1+∠2=180°.

在此基础上指出:“平行线的性质2 (定理)”和“平行线的性质3 (定理)”.

3.平行线判定与性质的区别与联系

投影:将判定与性质各三条全部打出.

(1)性质:根据两条直线平行,去证角的相等或互补. (2)判定:根据两角相等或互补,去证两条直线平行.

联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.

三、例题

例2如图所示,AB∥CD,AC∥BD.找出图中相等的角与互补的角.

A B

37C

12458D

6

此题一定要强调,哪两条直线被哪一条直线所截.

答:相等的角为:∠1=∠2,∠3=∠4,∠5=∠6,∠7=∠8.互补的角为:∠BAC+∠ACD=180°,∠ABD+∠CDB=180°,∠CAB+∠DBA=180°,∠ACD+∠BDC=180°.

相等的角还有:∠ACD=∠ABD,∠BAC=∠BDC.(同角的补角相等) 例3如图所示.已知:AD∥BC,∠AEF=∠B,求证:AD∥EF. 分析:(执果索因)从图直观分析,欲证AD∥EF,只需∠A+∠AEF=180°,

(由因求果)因为AD∥BC,所以∠A+∠B=180°,又∠B=∠AEF,所以∠A+∠AEF=180°成立.于是得证. 证明:因为 AD∥BC,(已知)

所以 ∠A+∠B=180°.(两直线平行,同旁内角互补) 因为 ∠AEF=∠B,(已知)

所以 ∠A+∠AEF=180°,(等量代换)

所以 AD∥EF.(同旁内角互补,两条直线平行)

AEDF四、练习:

1.如图所示,已知:AE平分∠BAC,CE平分∠ACD,且AB∥CD.

求证:∠1+∠2=90°. 证明:因为 AB∥CD, 所以 ∠BAC+∠ACD=180°,

又因为 AE平分∠BAC,CE平分∠ACD, 所以?1??BAC,?2??ACD,

故?1??2?(?BAC??ACD)??1800?900. 即 ∠1+∠2=90°. (理由略)

2.如图所示,已知:∠1=∠2, 求证:∠3+∠4=180°. 分析:(让学生自己分析)

BC12121212

证明:(学生板书)

小结

我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式发现性质1(公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系.

作业:

1.如图,AB∥CD,∠1=102°,求∠2、∠3、∠4、∠5的度数,并说明根据?

2.如图,EF过△ABC的一个顶点A,且EF∥BC,如果∠B=40°,∠2=75°,那么∠1、∠3、∠C、∠BAC+∠B+∠C各是多少度,为什么?

3.如图,已知AD∥BC,可以得到哪些角的和为180°?已知AB∥CD,可以得到哪些角相等?并简述理由.

5.3平行线性质(二)

[教学目标]

6. 经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力 7. 理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论 8. 能够综合运用平行线性质和判定解题 [教学重点与难点]

重点:平行线性质和判定综合应用,两条平行线的距离,命题等概念 难点:平行线性质和判定灵活运用

[教学设计]

一.复习引入 1.平行线的判定方法有哪些? 2.平行线的性质有哪些? 3.完成下面填空

已知:BE是AB的延长线,AD//BC,AB//CD,若?D?100 则?C,?A,?EBC

4.a?b,c?b那么a,c的位置关系如何?

二.新课

1.例1,已知a//c,a?b,直线b与c垂直吗?为什么?

例2如图是一块梯形铁片的残余部分,量得?A?100,?B?115,梯形另外两个角分别是多少度?

???

2.实践 与探究

(1)学生操作:用三角尺和直尺画平行线,做成一张5?5 个格子的方格纸。观察并思考:做出的方格纸的一部分,

线段B1C1,B2C2?B5C5都与两条平行线A1B5,A2C5垂直 吗?它们的长度相等吗?

教师给出两条平行线的距离定义:同时垂直于两条平行线,

并且夹在这两条平行线间的线段长度叫做两条平行线的距离。

问题:AB//CD,在CD上任取一点E,作EF?AB,垂足F,问EF是否垂直DC?垂线段EF是平行线AB、CD的距离吗?

结论:两条平行线的距离处处相等,而不随垂线段的位置而改变 3.命题和它的构成 下列语句,分析语句的特点

(1)如果两条直线都与第三条直线平行,那么这两条直线也平行。 (2)对顶角相等

(3)等式两边同加上同一个数,结果仍是等式 (4)如果两条直线不平行,那么同位角不相等

这些句子都是对某一件事情作出“是”或“不是”的判断 命题:判断一件事情的句子,叫做命题

(1)命题的组成:命题由题设和结论两部分组成,题设是已知项,结论是由已知项推出的事项 (2)形式:通常写成“如果?,那么?”的形式, 三.巩固练习

1.“等式两边乘以同一个数,结果仍是等式”是命题吗?如果是,它的题设和结论分别是什么? 2举出一些命题的例子 四.作业 课本P25

5.4平移

[教学目标]

9. 了解平移的概念,会进行点的平移,理解平移的性质,能解决简单的平移问题 10. 培养学生的空间观念,学会用运动的观点分析问题.

[教学重点与难点]

重点:平移的概念和作图方法.

难点:平移的作图.

[教学设计]

一. 观察图形 形成印象 生活中有许多美丽的图案,他们都有着共同的特点,请

同学们欣赏下面图案.

观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?

学生思考讨论,借助举例说明. 二.提出新知 实践探索

平移:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同.

(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点. (3)连接各组对应 的线段平行且相等.

图形的这种变换,叫做平移变换,简称平移(translation)

探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案

三.典例剖析 深化巩固

例 如图,(1)平移三角形ABC,使点A运动到A`,画出平移后的三角形A`B`C`.

[巩固练习]

教材33页:1,2,4,5,6,7

[小结]

1. 在平移过程中,对应点所连的线段也可

能在一条直线上,当图形平移的方向是沿着一边所在直线的方向时,那么此边

上的对应点必在这条直线上

2. 利用平移的特征,作平行线,构造等量关系是接7题常用的方法.

[作业]

必做题:教科书33页习题:3题

[备选题]

1. 经过平移,三角形ABC的边AB移到了EF,作出平移后的三角形,你能给出几种作法?

2. 如图,将半圆图形按箭头所指的方向平移,其中A点到了A`点,

作出平移后的图形.

3. 如图,在四边形ABCD中,AD//BC,AB=CD,AD

足为E,画出三角形ABE平移后的三角形,其平移方向为射线AD的方向,平移的距离为AD的长.

(1) 平移后的三角形中,与B,E的对应点F,G,还是在BC边上吗? (2) ∠B和∠C相等吗?说明理由。

6.1.1有序数对

[教学目标]

11. 理解有序数对的应用意义,了解平面上确定点的常用方法 12. 培养学生用数学的意识,激发学生的学习兴趣.

[教学重点与难点]

重点:有序数对及平面内确定点的方法. 难点:利用有序数对表示平面内的点.

[教学设计]

一.问题探知

1.一位居民打电话给供电部门:“卫星路第8根电线杆 的路灯坏了,”维修人员很快修好了路灯同学们欣赏下面图案.

2.地质部门在某地埋下一个标志桩,上面写着“北纬44.2°,东经125.7°”。

3.某人买了一张8排6号的电影票,很快找到了自己的座位。

分析以上情景,他们分别利用那些数据找到位置的。 你能举出生活中利用数据表示位置的例子吗? 二.概念确定

有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对(ordered pair),记作(a,b) 利用有序数对,可以很准确地表示出一个位置。

与3大道例1 如图,点A表示3街与5大道的十字路口,点B表示5街与3大道的十字路口,如果用(3,5)(4,5)→(5,5)→(5,4)→(5,3)表示由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?

6大道 5大道 4大道 A 3大道 B 2大道 1大道

1街

2街

3街

4街

5街

6街

分析:图中确定点用前一个数表示大街,后一个数表示大道。 解:其他的路径可以是:

(3,5)→(4,5)→(4,4)→(5,4)→(5,3); (3,5)→(4,5)→(4,4)→(4,3)→(5,3); (3,5)→(3,4)→(4,4)→(5,4)→(5,3); (3,5)→(3,4)→(4,4)→(4,3)→(5,3); (3,5)→(3,4)→(3,3)→(4,3)→(5,3);

[设计说明]

根据描述的情景找出表示地点的数量

学生举例说明生活中的类似确定点的我位置的例子

明确数对的表示含义和格式

寻找规律确定路线

1.在教室里,根据座位图,确定数学课代表的位置 2.教材46页练习 三.方法归类

常见的确定平面上的点位置常用的方法

(1)以某一点为原点(0,0)将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。 (2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。 1.如图,A点为原点(0,0),则B点记为(3,1

北B(小岛)45°?

A(灯塔)

2.如图,以灯塔A为观测点,小岛B在灯塔A北偏东45,距灯塔3km 处。

例2 如图是某次海战中敌我双方舰艇对峙示意图 ,对我方舰艇来说:

(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?

(2)距我方潜艇图上距离为1cm处的敌舰有哪几艘? (3)要确定每艘敌舰的位置,各需要几个数据?

北小岛敌方战舰B我方战舰2号我方潜艇敌方战舰C我方战舰1号敌方战舰A[巩固练习]

1. 如图是某城市市区的一部分示意图,对市政府来说: (1) 北偏东60的方向有哪些单位?要想确定单位的位

置。还需要哪些数据?

(2) 火车站与学校分别位于市政府的什么方向,怎样确

结合实际问题归纳方法

学生尝试描述位置

定他们的位置?

购物中心酒店银行市政府学校摩天大楼火车站 2. 如图,马所处的位置为(2,3). (1) 你能表示出象的位置吗? (2) 写出马的下一步可以到达的位置。 54象马32987654321 [小结]

3. 为什么要用有序数对表示点的位置,没有顺序可以

吗?

4. 几种常用的表示点位置的方法. [作业]

必做题:教科书49页:1题

仿照前面方法确定位置关系

可以变化出其他的象棋盘上的位置,也可以引申到围棋盘或其他棋类。

2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组; 3、学会比较估算与精确计算以及检验方程组的解是否符合题意并正确作答; 4、培养分析、解决问题的能力,体会二元一次方程组的应用价值,感受数学文化。 教学难点 知识重点 确定解题策略,比较估算与精确计算。 以方程组为工具分析,解决含有多个未知数的实际问题。 教学过程(师生活动) 前面我们结合实际问题,讨论了用方程组表示问题中的条件以及如何解方程组.本节我们继续探究如何用方程组解决实际问题. (出示问题)养牛场原有30只母牛和15只小牛,一天约需用饲料创设情境 kg.饲养员李大叔估计平均每只母牛1天约需用饲料18~20 kg,每只小牛1天约需用饲料7~8 kg.你能否通过计算检验他的估计? 设计理念 开门见山,直接提出本节学习目标,强化本章的以学生身边的实际问题展开讨论,突出数学与现实的联系. 学生思考、讨论. 判断李大叔的估计是否正确的方法有两种: 一、先假设李大叔的估计正确,再根据问题中给定的数量关系来检验. 二、根据问题中给定的数量关系求出平均每只母牛和每只小牛1天探索分析 解决问题 各约需用饲料量,再来判断李大叔的估计是否正确. 学生在比较探究后发现用方法二较简便. 设问1:如果选择方法二,如何计算平均每只母牛和每只小牛1天各约需用饲料量? (有前面几节的知识准备,学生可以回答) 列方程组求解. 主要思路: 设未知数 数学问题 实际问题 列方程组 (二元一次方程组) 学生先独立思考,然后师生共同讨论解题过程. 解:设平均每只母牛和每只小牛1天各约需用饲料xkg和ykg. 找出相等关系列方程组 实际应用 引导学生探寻解题思路,并对各种方法进行比较,方法一主要是要估算的运用,而方法二是方程思想的应用。 675 kg;一周后又购进12只母牛和5只小牛,这时一天约需用饲料940 中心问题. 分步到位,渗透模型化的思想。 规范解题步骤,培养学生有条理地思考、表达的习惯。 让学生认识到?30x?15y?675 ? ?42x?20y?940 解这个方程组,得 检验的重要性, 这就是说,平均每只母牛和每只小牛1天各约需用饲料20kg和5kg.饲养员李大叔对母牛的食量估计正确,对小牛的食量估计不正确. 并学会正确作答。 设问2:以上问题还能列出不同的方程组吗?结果是否一致? 个别学生可能会列出如下方程组 拓广探索 比较分析 ??x?20 ? y?5??30x?15y?675 ?12x?5y?265比较分析,加深对方程组的认识。 但结果一致.

课堂练习 《一千零一夜》中有这样一段文字:有一群鸽子,其中一部分在树上欢歌,另一部分在地上觅食.树上的一只鸽子对地上觅食的鸽子说:“若从你们中飞上来一只,则树下的鸽子就是整个鸽群的1/3;若从树上飞下去一只,则树上、树下的鸽子就一样多了.”你知道树上、树下各有多少只鸽子吗? 出示古典名题一方面及时巩固用方程组解决实际问题的过程,另一方面让学生感受数学文化。 小结与作业 提问:通过这节课的学习,你知道用方程组解决实际问题有哪些步骤? 学生思考后回答、整理: ①设未知数. 小结提高 ②找相等关系. ③列方程组. ④检验并作答. 以问题的形式出现,引导学生思考、交流,梳理所学知识,建立起符合自身认识特点的知识结构.训练口头表达能力,养成及 时归纳总结的良好学习习惯. 布置作业 8、 必做题:教科书116页习题8.3第1(1)3、5题。 9、 选做题:教科书112页习题8.3第8题。 本课教育评注(课堂设计理念,实际教学效果及改进设想) 从实际问题出发,通过分析实际问题中的数量关系,列出二元一次方程组这种数学模 型,通过对方程组解的检验,让学生认识到检验不仅要检查求得的解是否适合方程组中的每一个方程,而且还要考查所得的解答是否符合实际问题的要求,初步体验用方程组解决实际问题的全过程. 在重视方程的应用价值的同时关注其文化内涵.给出《一千零一夜》(希腊文集)中的数学名题,使学生在数学知识和能力得到提高的同时能够感受到数学文化的熏陶..

课题: 8.3 再探实际问题与二元一次方程(2)

1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型; 教学目标 教学难点 知识重点 2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组; 3、学会开放性地寻求设计方案,培养分析 用方程组刻画和解决实际问题的过程。 经历和体验用方程组解决实际问题的过程。 教学过程(师生活动) 前面我们初步体验了用方程组解决实际问题的全过程,其实生产、生活中还有许多问题也能用方程组解决. 创设情境 (出示问题)据以往的统计资料,甲、乙两种作物的单位面积产量的比是1:1 :5,现要在一块长200 m,宽100 m的长方形土地上种植这两种作物,怎样把这块地分为两个长方形,使甲、乙两种作物的总产量的比是3:4(结果取整数)? 以上问题有哪些解法? 探索分析 研究策略 学生自主探索,合作交流,整理思路: (1)先确定有两种方法分割长方形;再分别求出两个小长方形的面积;最后计算分割线的位置. 设计理念 以学生身边的实际问题展开学习,突出数学与现实的联系,培养学生用数学的意识。 多角度分析问题,多策略解决问题,提高思维的发散性。

(2)先求两个小长方形的面积比,再计算分割线的位置. (3)设未知数,列方程组求解. ?? 学生经讨论后发现列方程组求解较为方便. 引导学生回顾列方程解决实际问题的基本思路 (1) 设未知数 (2) 找相等关系 (3) 列方程组 (4) 检验并作答 如图,一种种植方案为:甲、乙两种作物的种植区域分别为长方形AEFD和BCFE.设AE=xm,BE=ym,根据问题中涉及长度、产量的数量关系,列方程组 比较分析,加深对方程组的认识。 画图,数形结合,辅助学生分析。 进一步渗透模型化的思想。 引发学生思考,寻求解决途径。 以学生学习生活中遇到的 问题展开讨论,巩固用二元一次 方程组解决实际问题的一般过程,并不断提高分析问题的能力.安排开放题,以利于培养学生探索精神和创新意识. 合作交流 解决问题 ?x?y?200 ??100x:1.5?100y?3:4解这个方程组得 15?x?105??17 ?2?y?94?17?过长方形土地的长边上离一端约106 m处,把这块地分 为两个长方形.较大一块地种甲作物,较小一块地种乙作物. 你还能设计别的种植方案吗? 用类似的方法,可沿平行于线段AB的方向分割长 方形. 教师巡视、指导,师生共同讲评. 拓展探究 综合应用 学生在手工实践课中,遇到这样一个问题:要用20张白卡纸制作包装纸盒,每张白卡纸可以做盒身2个,或者做盒底盖3个,如果1个盒身和2个盒底盖可以做成一个包装纸盒,那么能否将这些白卡纸分成两部分,一部分做盒身,一部分做盒底盖,使做成的盒身和盒底盖正好配套?请你设计一种分法. 按以下步骤展开问题的讨论: (l)学生独立思考,构建数学模型. (2)小组讨论达成共识. (3)学生板书讲解. (4)对方程组的解进行探究和讨论,从而得到实际问题的结果. (5)针对以上结论,你能再提出几个探索性问题吗? 小结与作业 提问:通过本节课的讨论,你对用方程解决实际的方法又有何新的小结提高 认识? 学生思考后回答、整理. 布置作业 10、 11、 12、 必做题:教科书116页习题8.3第1(2)、4题。 选做题:教科书117页习题8.3第7题。 备选题:

(1) 解方程组??5x?3y?6 ?3x?2y?15 分层次布1作业.其中“必 做题”面向全体学生,巩固知识、 方法,加深理解厂选做题”面向 部分学有余力的学生,给他们一 定的时间和空(2)小颖在拼图时,发现8个一样大小的矩形(如图1所示),恰好可以拼成一个大的矩形. 小彬看见了,说:“我来试一试.”结果小彬七拼八凑,拼成如图2那样的正方形.咳,怎么中间还留下一个洞,恰好是边长2 mm的小正方形! 你能帮他们解开其中的奥秘吗? 提示学生先动手实践,再分析讨论. 间,相互合作,自主探究,增强实践能力.备选通供教师参考. 本课教育评注(课堂设计理念,实际教学效果及改进设想) 本课所提供的例题、练习题、作业题突出体现以下特点: 1、活动性.学生在图形分割、手工操作、拼图游戏中展开数学问题的讨论,更具趣味性,学生在玩中学、做中学,在增强能力的同时,收获快乐. 2、探索性.问题解决的策略不易获得,问题中的数量关系不易发现,问题中的未知数不 易设定,这为学生开展探究活动提供了机会. 3、开放性.解决问题的策略、方法、问题的结论的开放性设计,意在增强学生的创新意识和培养勇于挑战、克服困难的能力.

课题: 8.3 再探实际问题与二元一次方程(3)

1、进一步经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模教学目标 型; 2、会用列表的方式分析问题中所蕴涵的数量关系,列出二元一次方程组; 3、培养分析问题、解决问题的能力,进一步体会二元一次方程组的应用价值. 教学难点 知识重点 借助列表分问题中所蕴含的数量关系。 用列表的方式分析题目中的各个量的关系。 教学过程(师生活动) 最近几年,全国各地普遍出现了夏季用电紧张的局面,为疏导电价电力行业中峰谷的含义是用山峰和山谷来形象地比喻用电负荷特性的变化幅度一般白天的用电比较集中、用电功率比较大,而夜里人们创设情境 休息时用电比较小,所以通常白天的用电称为是高峰用电,即8:00~22:00,深夜的用电是低谷用电即22:00~次日8:00.若某地的高峰电价为每千瓦时0.56元;低谷电价为每千瓦时。.28元.八月份小彬家的总用电量为125千瓦时,总电费为49元,你知道他家高峰用电量和低谷用电量各是多少千瓦时吗? 学生独立思考,容易解答. 设计理念 以一道生活热点现实意义.激发学生学习兴趣,同时培养学生节约、合理用电的意识. 理解题意是关健.通过该题,旨在培养学生的矛盾,促进居民节约用电、合理用电,各地出台了峰谷电价试点方案. 问题引入,具有

读题能力和收集信息能力. (出示例题)如图,长青化工厂与A,B两地有公路、铁路相连.这家工厂从A地购买一批每吨1 000元的原料运回工厂,制成每吨8 000元的产品运到B地.公路运价为1. 5元(吨·千米),铁路运价为1.2元(吨·千米),这两次运输共支出公路运费15000元,铁路运费97200元.这批产品的销售款比原料费与运输费的和多多少元? (图见教材115页,图8.3-2) 学生自主探索、合作交流. 设问1.如何设未知数? 销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁本例所涉及的数据较多,数量关系较为复杂,具有一定挑战性,能激发学生探索路运费与产品数量和原料数量都有关.因此设产品重x吨,原料重y吨. 的热情. 设问2.如何确定题中数量关系? 列表分析 探索分析 解决问题 公路运费(元) 铁路运费(元) 价值(元) 由上表可列方程组 产品x吨 原料y吨 合计 通过讨论让学生认识到合理设定未知数的愈义. 借助表格辅助分析题中较复杂的数量关系,不失为一种好方法. ?1.5??20x?10y??15000 ???1.2?110x?120y?97200?解这个方程组,得 ?x?300 ??y?400因为毛利润-销售款-原料费-运输费 所以这批产品的销售款比原料费与运输的和多1887800元. 引导学生讨论以上列方程组解决实际问题的 学生讨论、分析:合理设定未知数,找出相等关系。 某瓜果基地生产一种特色水果,若在市场上每吨利润为1000元;经粗加工后销售,每吨利润增为4500元;经精加工后销售,每吨利润可达7500元。一食品公司 购到这种水果140吨,准备加工后上市销售.该公司的加工能力是:每天可以精加工6吨或者粗加工16吨,但两种加工方式不能同时进行.受季节等条件限制,公司必须将这批水果全部销售或加工完毕,为此公司研制二种可行的方案: 方案一:将这批水果全部进行粗加工; 方案二:尽可能多对水果进行精加工,没来得及加工的水果在市场上销售; 方案三:将部分水果进行精加工,其余进行粗加工,并恰好15天完成. 你认为选择哪种方案获利最多?为什么? 学生合作讨论完成 小结与作业 1、在用一元一次方程组解决实际问题时,你会怎样设定未知数,小结提高 可借助哪些方式辅助分析问题中的相等关系? 2、小组讨论,试用框图概括“用一元一次方程组分析和解决实际问题”的基本过程. 选择经济领城问题让学生展开讨论,增强市场经济意识和决策能力,同时巩固二元一次方程组的应用. 课堂练习 反馈调控 这是第一次比较完整地用框图反映实际问题与二元一次方程组的


7新课标人教版七年级数学下学期教案全册.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:LED产品封装技术研发能力提升建设项目可行性研究报告

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219