基本概念——MFC篇
微生物燃料电池:(Microbial Fuel Cell,MFC)是一种利用微生物将有机物中的化学能直接转化成电能的装置。其基本工作原理是:在阳极室厌氧环境下,有机物在微生物作用下分解并释放出电子和质子,电子依靠合适的电子传递介体在生物组分和阳极之间进行有效传递,并通过外电路传递到阴极形成电流,而质子通过质子交换膜传递到阴极,氧化剂(一般为氧气)在阴极得到电子被还原与质子结合成水。
燃料电池:燃料电池(FuelCell)是一种将存在于燃料与氧化剂中的化学能直接转化为电能的发电装置。燃料和空气分别送进燃料电池,电就被奇妙地生产出来。它从外表上看有正负极和电解质等,像一个蓄电池,但实质上它不能“储电”而是一个“发电厂”。
电池:电池(battery)指盛有电解质溶液和金属电极以产生电流的杯、槽或其他容器或复合容器的
部分空间。随着科技的进步,电池泛指能产生电能的小型装置。如太阳能电池。电池的性能参数主要有电动势、容量、比能量和电阻。
燃料:能通过化学或物理反应(包含反应)释放出能量的物质。按其形成可以分为固体燃料、液体燃料和气体燃料,还有核燃料。
氧化还原介体:能加速初级电子供体的电子向最终电子受体传递的化合物。
微生物:个体微小,结构简单,通常要用光学显微镜和电子显微镜才能看清楚的生物,统称为微生物。微生物包括细菌、病毒、霉菌、酵母菌等。(但有些微生物是肉眼可以看见的,像属于真菌的蘑菇、灵芝等。) 包括细菌、病毒、真菌以及一些小型的原生动物、显微藻类等在内的一大类生物群体,它个体微小,却与人类生活关系密切。涵盖了有益有害的众多种类,广泛涉及健康、食品、医药、工农业、环保等诸多领域。
细菌:广义的细菌即为原核生物是指一大类细胞核无核膜包裹,只存在称作拟核区(nuclear region)(或拟核)的裸露DNA的原始单细胞生物,包括真细菌(eubacteria)和古生菌(archaea)两大类群。人们通常所说的即为狭义的细菌,狭义的细菌为原核微生物的一类,是一类形状细短,结构简单,多以二分裂方式进行繁殖的原核生物,是在自然界分布最广、个体数量最多的有机体,是大自然物质循环的主要参与者。
电能原位:未加负载,直接输出电压
缓冲溶液:指磷酸缓冲溶液,用于维持溶液酸碱度(pH:6.8) 电子受体:指在电子传递中接受电子的物质和被还原的物质
介体种类:向微生物燃料电池中添加的介体主要有两种:第一类是人工合成的介体,主要是一些染料类的物质,如吩嗪、吩噻嗪、靛酚、硫堇等等。这些介体必须满足一定的条件:(1) 能穿透进入微生物的细胞内发生氧化反应;(2) 非常容易得电子;(3) 在被还原之前能快速离开微生物细胞;(4) 在阳极表面有很好的电化学活性;(5) 稳定性好;(6) 在阳极电解液中是可溶的;(7) 对微生物没有毒性;(8) 不会被微生物代谢掉。第二类是某些微生物自身可以合成介体,如Pseudomonas
aeruginosastrainKRP1 能够合成绿脓菌素和吩嗪-1-甲酰胺等物质,它合成的介体不光自己可以使用,其它的微生物也可以利用它产生的介体传递电子。
电极:在电池中电极一般指与电解质溶液发生氧化还原反应的位置。电极有正负之分,一般正极为阴极,获得电子,发生还原反应,负极则为阳极,失去电子发生氧化反应。电极可以是金属或非金属,只要能够与电解质溶液交换电子,即成为电极。
中间体:中间体 intermediate 又称有机中间体。用煤焦油或石油产品为原料以制造染料、农药、医药、树脂、助剂、增塑剂等的中间产物。因最初用于制造染料,也称染料中间体。
超极化:是指跨膜电位处于较原来的参照状态(如静息状态)下的跨膜电位更负(膜电位的绝对值更高)的状态
质子跨膜转运的性能:目前大部分的MFCs研究都使用Nafion—质子转换膜(PEMs)。然而,Nafion—膜对于(生物)污染是很敏感的,例如铵。而目前最好的结果来自于使用Ultrex阳离子交换膜。Liu等不用使用膜,而转用碳纸作为隔离物。虽然这样做显著降低了MFC的内在电阻,但是,在有阳极电解液组分存在的情况下,这一类型的隔离物会刺激阴极电极的生长,并且对于阴极的催化剂具有毒性。而且目前尚没有可信的,关于这些碳纸-阴极系统在一段时期而不是短短几天内的稳定性方面的数据。
MFC内在电阻:这一参数既依赖于电极之间的电解液的电阻值,也决定于膜电阻的阻值(Nafion—具有最低的电阻)。对于最优化的运转条件,阳极和阴极需要尽可能的相互接近。虽然质子的迁移会显著的影响与电阻相关的损失,但是充分的混合将使这些损失最小化。
IVIFC(支柱性核心技术):污物驱动的应用在于能够显著的移除废弃的底物。目前,使用传统的好氧处理时,氧化每千克碳水化合物就需要消耗1 kWh的能量。例如,生活污水的处理每立方米需要消耗0.5 kWh的能量,折算后在这一项上每人每年需要消耗的能源约为30 kWh。为了解决这一问题,需要开发一些技术,特别是针对高强度的废水。在这一领域中常用的是Upflow Anaerobic Sludge Blanket反应器,它产生沼气,特别是在处理浓缩的工业废水时。UASB反应器通常以每立方米反应器每天10~20 kg化学需氧量的负荷速率处理高度可降解性的废水,并且具有(带有一个燃烧引擎作为转换器)35%的总电力效率,意味着反应器功率输出为0.5~1 kW/m3。它的效率主要决定于燃烧沼气时损失的能量。未来如果发展了比现有的能更有效的氧化沼气的化学染料电池的话,很可能能够获得更高的效率。
能够转化具有积极市场价值的某种定性底物的电池,譬如葡萄糖,将以具有高能量效率作为首要目标。虽然MFCs的功率密度与诸如甲醇驱动的FCs相比是相当低的,但是对于这项技术而言,以底物安全性为代表的多功能性是它的一个重要优势。 全面的看,作为一种参考,以高速率的厌氧消化手段从生物量中重获能量的资本支出约为安装每百万瓦生产量花费100万瓦。后一数值也同样适用于通过传统的燃烧途径、风力涡轮机以及化学染料电池等方法利用化石燃料产能。因此这一手段也处于竞争之地。何况目前,微生物燃料电池尚未达到这一水准的功率输出。负荷速率为每天每立方米反应器0.1~10 kg的化学需氧量时,可以认为实际上能达到的功率输出在0.01~1.25 kW/m3之间。然而,对于好氧的处理过程,观察到的生长速率为消耗每克有机底物产生0.4克生物量生成,而对于厌氧发酵产生沼气的过程这一速率理论上仅为0.077。基于MFC过程的本质,其产量应该介于这两种代谢类型之间。观察到的以葡萄糖饲喂的MFCs的生长速率在0.07~0.22之间。由于废水处理设备中淤泥处理的花费多达每吨干物质500,这一数量的减少对于该过程的经济平衡具有重要的提示意义。
有效的设计和操作能够创造一种技术平台,能够在多种领域运用而不需要进行本质上的修改。除了经济方面,MFCs已经展现了支柱性的核心技术的姿态。它们在低的和适中的温度下能有效的产生能量并转化一系列的电子供体,甚至即使电子供体仅以低浓度存在。在这些方面现在还没有能够与之相媲美的其他已知技术。
MFC中的阳极电子传递机制:电子向电极的传递需要一个物理性的传递系统以完成电池外部的电子转移。这一目的既可以通过使用可溶性的电子穿梭体,也可以通过膜结合的电子穿梭复合体。 氧化性的、膜结合的电子传递被认为是通过组成呼吸链的复合体完成的。已知细菌利用这一通路的例子有Geobacter metallireducens 、嗜水气单胞菌(Aeromonas hydrophila)以及Rhodoferax ferrireducens。决定一个组分是否能发挥类似电子门控通道的主要要求在于,它的原子空间结构相位的易接近性(即物理上能与电子供体和受体发生相互作用)。门控的势能与阳极的高低关系则将决定实际上是否能够使用这一门控(电子不能传递给一个更还原的电极)。 MFCs中鉴定出的许多发酵性的微生物都具有某一种氢化酶,例如布氏梭菌和微肠球菌。氢化酶可能直接参加了电子向电极的转移过程。最近,这一关于电子传递方法的设想由McKinlay和Zeikus提出,但是它必须结合可移动的氧化穿梭体。它们展示了氢化酶在还原细菌表面的中性红的过程中扮演了某一角色。
细菌可以使用可溶性的组分将电子从一个细胞(内)的化合物转移到电极的表面,同时伴随着这一化合物的氧化。在很多研究中,都向反应器中添加氧化型中间体比如中性红,劳氏紫
(thionin)和甲基紫萝碱(viologen)。经验表明这些中间体的添加通常都是很关键的。但是,细菌也能够自己制造这些氧化中间体,通过两种途径:通过制造有机的、可以被可逆的还原化合物(次级代谢物),和通过制造可以被氧化的代谢中间物(初级代谢物)。
第一种途径体现在很多种类的细菌中,例如腐败谢瓦纳拉菌(Shewanella putrefaciens)以及铜绿假单胞菌(Pseudomonas aeruginosa)。近期的研究表明这些微生物的代谢中间物影响着MFCs的性能,甚至普遍干扰了胞外电子的传递过程。失活铜绿假单胞菌的MFC中的这些与代谢中间体产生相关的基因,可以将产生的电流单独降低到原来的二十分之一。由一种细菌制造的氧化型代谢中间体也能够被其他种类的细菌在向电极传递电子的过程中所利用。
通过第二种途径细菌能够制造还原型的代谢中间体——但还是需要利用初级代谢中间物——使用代谢中间物如Ha或者HgS作为媒介。Schroder等利用E.coli K12产生氢气,并将浸泡在生物反应器中的由聚苯胺保护的铂催化电极处进行再氧化。通过这种方法他们获得了高达1.5mA/cm2(A,安培)的电流密度,这在之前是做不到。相似的,Straub和Schink发表了利用Sulfurospirillum deleyianum将硫还原至硫化物,然后再由铁重氧化为氧化程度更高的中间物。
有机化合物:(organic compound)主要由氧元素、氢元素、碳元素组成。有机物是生命产生的物质基础。脂肪、氨基酸、蛋白质、糖、血红素、叶绿素、酶、激素等。生物体内的新陈代谢和生物的遗传现象,都涉及到有机化合物的转变。此外,许多与人类生活有密切关系的物质,例如石油、天然气、棉花、染料、化纤、天然和合成药物等,均属有机化合物。
电路:由金属导线和电气以及电子部件组成的导电回路,称其为电路。直流电通过的电路称为“直流电路”;交流电通过的电路称为“交流电路”。
集成性:集成(integration)就是一些孤立的事物或元素通过某种方式集中在一起,产生联系,从而构成一个有机整体的过程。
能量密度:是指在一定的空间或质量物质中储存能量的大小。
溶液导电率:电导率是物体传导电流的能力。电导率测量仪的测量原理是将两块平行的极板,放到被测溶液中,在极板的两端加上一定的电势(通常为正弦波电压),然后测量极板间流过的电流。根据欧姆定律,电导率(G)是电阻(R)的倒数,是由电压和电流决定的。
电导率的基本单位是西门子(S),原来被称为姆欧(ohm)。因为电导池的几何形状影响电导率值,标准的测量中用单位电导率S/cm来表示,以补偿各种电极尺寸造成的差别。
导电率是导体电导率与纯铜电导率的比值,以百分数表示。即纯铜的导电率为100%。T1铜约为98%。
原位:源于拉丁语。指在原来的,正常、自然的部位或位置。
反应器:反应器 (reactor)实现反应过程的设备,广泛应用于化工、炼油、冶金、轻工等工业部门。化学反应工程以工业反应器中进行的反应过程为研究对象,运用数学模型方法建立反应器数学模型,研究反应器传递过程对化学反应的影响以及反应器动态特性和反应器参数敏感性,以实现工业反应器的可靠设计和操作控制。
直流电源:是维持电路中形成稳恒电流的装置。如干电池、蓄电池、直流发电机等
直流电:直流电(Direct Current,简称DC),是指方向和时间不作周期性变化的电流,但电流大小可能不固定,而产生波形。又称恒定电流。所通过的电路称直流电路,是由直流电源和电阻构成的闭合导电回路。
交流电:交流电alternating current ,简称为AC。发明者是尼古拉·特斯拉(Nikola Tesla,1856—1943)。交流电也称“交变电流”,简称“交流”。一般指大小和方向随时间作周期性变化的电压或电流。它的最基本的形式是正弦电流。我国交流电供电的标准频率规定为50赫兹,日本等国家为60赫兹。交流电随时间变化可以以多种多样的形式表现出来。不同表现形式的交流电其应用范围和产生的效果也是不同的。
电能:电能的利用是第二次工业革命的主要标志,从此人类社会进入电气时代,电能是表示电流做多少功的物理量 电能指电以各种形式做功的能力(所以有时也叫 电功 )。分为直流电能、交流电能,这两种电能均可相互转换。
干电池:干电池是一种伏打电池,利用某种吸收剂(如木屑或明胶)使内含物成为不会外溢的糊状。常用作手电筒照明、收音机等的电源
蓄电池:放电到一定程度后,经过充电又能复原续用的电池。所谓蓄电池即是贮存化学能量,于必要时放出电能的一种电气化学设备。
催化:改变化学反应速率而不影响化学平衡的作用。催化剂改变化学反应速率的作用称催化作用,它本质上是一种化学作用。在催化剂参与下进行的化学反应称催化反应。催化是自然界中普遍存在的重要现象,催化作用几乎遍及化学反应的整个领域。
催化作用分类:①均相催化。催化剂与反应物均处于同一相中的催化作用,如均相酸碱催化、均相络合催化等。均相催化大多在液相中进行。均相催化剂的活性中心比较均一,选择性较高,副反应较少,但催化剂难以分离、回收和再生。
②多相催化。发生在两相界面上的催化作用。通常催化剂为多孔固体,反应物为液体或气体。在多相催化反应中,固体催化剂对反应物分子发生化学吸附作用,使反应物分子得到活化,降低了反应的活化能,而使反应速率加快。固体催化剂表面是不均匀的,只有部分点对反应物分子发生化学吸附,称为活性中心。工业生产中的催化作用大多属于多相催化。
③生物催化。生物体内在酶作用下进行的催化反应。酶的催化作用具有高选择性、高催化活性、反应条件温和等特点,但受温度、溶液中的pH值、离子强度等因素影响较大。
④自动催化。反应产物的自我催化作用。在一些反应中,某些反应的产物或中间体具有催化功能,使反应经过一段诱导期后速率大大加快。自催化作用是发生化学振荡的必要条件之一。 其他还有电催化、光助催化、光电催化等......
电流:(1)电荷在媒质中的运动。电流方向规定为与电子运动方向相反。(2)流过导体给定截面的
元电量除以相应无穷小的时间。
电流,是指电荷的定向移动。电源的电动势形成了电压,继而产生了电场力,在电场力的作用下,处于电场内的电荷发生定向移动,形成了电流。电流的大小称为电流强度(简称电流,符号为I),是指单位时间内通过导线某一截面的电荷量,每秒通过1库仑的电量称为1「安培」(A)。安培是国际单位制中所有电性的基本单位。 除了A,常用的单位有毫安(mA)、微安(μA) 。
电子:静止质量为9.109×10^-31kg、电荷为-1.602×10^-19C的稳定基本粒子。在一般情况下是指带负电荷的负电子。其反粒子是带正电荷的正电子。
质子:质子(proton)是一种带 1.6 × 10-19 库仑(C)正电荷的亚原子粒子,直径约 1.6 to 1.7×10?15 m 1,质量是938百万电子伏特/c2(MeV/c2),即1.6726231 × 10-27 kg,大约是电子质量的1836.5倍。质子属于重子类,由两个上夸克和一个下夸克通过胶子在强相互作用下构成。原子核中质子数目决定其化学性质和它属于何种化学元素。
电路:electric circuit 专指:由金属导线和电气以及电子部件组成的导电回路,称其为电路。直流电通过的电路称为“直流电路”;交流电通过的电路称为“交流电路”。
内电路:电源内部的电路,叫做内电路,如发电机的线圈、电池内的溶液等。 内电路与外电路一样,也存在着恒定电场,正电荷也是在静电力的作用下移动的,这一区域的电阻叫做内电阻。当电路中有电流通过时,内电路两端有电压叫内电压。
外电路: 闭合电路由两部分组成,其中一部分是电源外部的电路,叫做外电路 除电源外的电路组成部分如:负载、输电导线和开关等统称外电路
能源:自然界赋存的已经查明和推定的能够提供热、光、动力和电能等各种形式的能量来源。包括一次能源和二次能源。
生物活性:1.生物活性是指能引起细胞正常机理发生改变的能力.在未得到更多的可决定DNA生物活性数值的数据以前,每剂产品中含pg水平的非目的DNA是可接受的”
2.生物活性是指生物材料与活体骨产生化学键合的能力,是衡量生物材料的一个重要指标.1990年Kokubo等川首次报道了能在生物活性玻璃表面促进磷灰石形成的类似于人体血浆的模拟体液(Simu-lationbodyfluid,SBF)
3.所谓生物活性是指FSH与特异性受体结合产生生物学效应的能刀.测定陀H的生物活性,常用岛体小鼠颗粒细胞测定法(GAEJ‘\\该方法的理论基础在于,FSH与颗粒细胞受体结合后,激活芳香酶,诱导产生的E
指数增长:当一个量在一个既定的时间周期中,其百分比增长是一个常量时,这个量就显示出指数增长。
周期:事情的发展或运动遵循连续重复的规律,连续的两次出现所耗费的时间就是一个周期
交流直流转换原理:交直流转换有热电变换、电动系、静电系、电子 系等方法。
营养物:机体从外界摄取的维持生命所需的营养物质,包括蛋白质,纤维以及抗生素。营养物是指有机体需要从外界吸取、并为维持生长发育等生命活动所需的物质。
膜质子传导:质子的穿膜转运。影响膜质子传导的重要因素有膜两侧的H+电化学梯度(质子泵的作用)、带负电的质子载体及膜电位与膜阻抗。
接触电阻:接触,对导体件呈现的电阻成为接触电阻。 一般要求接触电阻在10-20 mohm以下。 有的开关则要求在100-500uohm以下。有些电路对接触电阻的变化很敏感。 应该指出, 开关的接触电阻是在开关在若干次的接触中的所允许的接触电阻的最大值。在显微镜下观察连接器接触件的表面,尽管镀金层十分光滑,则仍能观察到5-10微米的凸起部分。会看到插合的一对接触件的接触,并不整个接触面的接触,而是散布在接触面上一些点的接触。实际接触面必然小于理论接触面。根据表面光滑程度及接触压力大小,两者差距有的可达几千倍。实际接触面可分为两部分;一是真正金属与金属直接接触部分。即金属间无过渡电阻的接触微点,亦称接触斑点,它是由接触压力或热作用破坏界面膜后形成的。部分约占实际接触面积的5-10%。二是通过接触界面污染薄膜后相互接触的部分。因为任何金属都有返回原氧化物状态的倾向。实际上,在大气中不存在真正洁净的金属表面,即使很洁净的金属表面,一旦暴露在大气中,便会很快生成几微米的初期氧化膜层。例如铜只要2-3分钟,镍约30分钟,铝仅需2-3秒钟,其表面便可形成厚度约2微米的氧化膜层。即使特别稳定的贵金属金,由于它的表面能较高,其表面也会形成一层有机气体吸附膜。此外,大气中的尘埃等也会在接触件表面形成沉积膜。因而,从微观分析任何接触面都是一个污染面。
PEM膜:质子交换膜(Proton Exchange Membrane Fuel,PEM)是PEMFC的核心部件,PEM与一般化学电源中使用的隔膜有区别。质子交换膜燃料电池已成为汽油内燃机动力最具竞争力的洁净取代动力源.用作PEM的材料应该满足以下条件:良好的质子电导率、水分子在膜中的电渗透作用小、气体在膜中的渗透性尽可能小、电化学稳定性好、干湿转换性能好、具有一定的机械强度、可加工性好、价格适当。
现阶段分为:全氟磺酸型质子交换膜;nafion重铸膜;非氟聚合物质子交换膜;新型复合质子交换膜等等。
Nafion膜:一种全氟磺酸质子交换膜,具有较高的离子传导性。
反极现象:蓄电池正常极性的改变。(1)指组装蓄电池组时个别单体蓄电池的极性与产品设计的规定相反;(2)指多个单体蓄电池串联成的电池组由于过放电引起其中个别容量较小的单体蓄电池的正极电势低于负极。电池长期反极而不予纠正将会失效甚至引起爆炸事故。
质子交换膜燃料电池:质子交换膜燃料电池(proton exchange membrane fuel cell,英文简称PEMFC)是一种燃料电池,在原理上相当于水电解的“逆”装置。其单电池由阳极、阴极和质子交换膜组成,阳极为氢燃料发生氧化的场所,阴极为氧化剂还原的场所,两极都含有加速电极电化学反应的催化剂,质子交换膜作为电解质。工作时相当于一直流电源,其阳极即电源负极,阴极为电源正极。
开路电势:外阻无穷大时所测得的输出电压。
亚克力:聚甲基丙烯酸甲酯。
同源性:进化过程中源于同一祖先的分支之间的关系。或从分子水平讲则是指两个核酸分子的核苷酸顺序或两个蛋白质分子的氨基酸顺序间的相似程度。
电极超电势:当电极处于平衡状态,电极上无电流通过时,这时的电极电势分别称为阳极平衡电势和阴极平衡电势.在有电流通过时,随着电极上电流密度的增加,电极实际分解电势值对平衡值的偏离也愈来愈大,这种对平衡电势的偏离现象称为电极的极化。
根据极化产生的不同原因,通常把极化大致分为两类:浓差极化和电化学极化。
浓差极化:在电解过程中,电极附近某离子浓度由于电极反应而发生变化,本体溶液中离子扩散的速度又赶不上弥补这个变化,就导致电极附近溶液的浓度与本体溶液间有一个浓度梯度,这种浓度差别引起的电极电势的改变称为浓差极化,用搅拌和升温的方法可以减少浓差极化,但也可以利用滴汞电极上的浓差极化进行极谱分析。
电化学极化:电极反应总是分若干步进行,若其中一步反应速率较慢,需要较高的活化能,为了使电极反应顺利进行所额外施加的电压称为电化学超电势(亦称为活化超电势),这种极化现象称为电化学极化。
电动势:维持电流持续流动的电学量,为理想电压源的端电压。数值上与开路电压相等。E=W/q E=IR+Ir
能源利用率:有效利用能量占全部消耗能量的百分数。表示能量利用水平。
电解槽:在外加电源的作用下,将电能转变成化学能的电池。
微生物电解槽:微生物电解池(MEC):相对于微生物燃料电池(MFC)来说,是其反过程。利用微生物作为反应主体,在阴阳极间施加电流,产生氢气或者甲烷的一种电解池。 电源:提供电能的装置。
检漏:检查反应器是否泄漏。(检查是否漏水)
气密性检验:将压缩空气(或氨、氟利昂、氦、卤素气体等)压入容器,利用容器内外气体的压力差检查有无泄漏的试验法。
去离子水:(deionized water)是指除去了呈离子形式杂质后的纯水。
硅橡胶:一种合成橡胶,具有无味无毒,不怕高温和抵御严寒的特点。
铁氰酸钾:六氰合铁(Ⅲ)酸钾,K3[Fe(CN)6],俗称赤血盐。
杀菌:杀菌是指杀灭物体中的致病菌,物体中还含有芽孢、嗜热菌等非致病菌,杀菌与灭菌的区别在于此。
曝气:用向水中充气或机械搅动等方法增加水与空气接触面积,是废水需氧生物处理的中间工艺。
缓冲液:当往某些溶液中加入一定量的酸和碱时,有阻碍溶液pH变化的作用,称为缓冲作用,这样的溶液叫做缓冲溶液。
活性污泥:以降解有机污染物的微生物为主体,与污水中悬浮物、胶体物质组成的絮状混合物。
营养物质:营养物质,是指N、P、K等。
生物质:一切直接或间接利用绿色植物光合作用形成的有机物质。包括除化石燃料外的植物、动
物和微生物及其排泄与代谢物等。
培养基:培养基(Medium)是供微生物、植物和动物组织生长和维持用的人工配制的养料,一般都含有碳水化合物、含氮物质、无机盐(包括微量元素)以及维生素和水等。
基质:培养基中的养料成分。
活性:生物体内发生的生理过程或处于活动的状态或属性。
最大输出功率: 最大功率是指电源在单位时间内,电路元件上能量的最大变化量,是具有大小及正负的物理量。在这里特指最大输出功率。最大功率越大,电源所能负载的设备也就越多。 当外电阻与电池内阻相等时,得到电池最大输出功率密度。
电流值:路端电压(U)与外电阻(R)的比值。
输出功率:这里是指单位阳极有效面积所输出的功率。
放电曲线:电池输出功率与电流之间的关系为放电曲线。
功率密度:功率密度是指燃料电池能输出最大的功率除以整个燃料电池系统的重量或体积,单位是瓦/公斤或瓦/升。
极化曲线:描述电极电势与通过电极的电流密度之间关系的曲线。
串联:使同一电流通过所有相连接器件的联结方式。
电流密度:描述电路中某点电流强弱和流动方向的物理量。它是矢量[1],其大小等于单位时间内通过某一单位面积的电量,方向向量为单位面积相应截面的法向量,指向由正电荷通过此截面的指向确定。单位:安培每平方米,记作A/㎡。 它在物理中一般用J表示。 公式:J=I/S
碳棒:碳棒为非金属制品,作为碳弧气刨切割工艺中的一种必备的焊接前的切割耗材,是由碳、石墨加上适当的粘合剂,通过挤压成形,经2200℃焙烤旋段后镀一层铜而制成,耐高温,导电性良好,不易断裂,适用于将金属切割成符合要求的形状。
碳毡:碳纤维制成的毡,简称碳毡。以聚丙烯腈基碳毡为例。
陶瓷:陶瓷的材料的成份主要是氧化硅、氧化铝、氧化钾、氧化钠、氧化钙、氧化镁、氧化铁、氧化钛等。常见的陶瓷原料有粘土、石英、钾钠长石等。
活性炭:活性炭又称活性炭黑。是黑色粉末状或颗粒状的无定形碳。活性炭主成分除了碳以外还有氧、氢等元素。活性炭在结构上由于微晶碳是不规则排列,在交叉连接之间有细孔,在活化时会产生碳组织缺陷,因此它是一种多孔碳,堆积密度低,比表面积大。
石墨:石墨是元素碳的一种同素异形体,每个碳原子的周边连结著另外三个碳原子(排列方式呈蜂巢式的多个六边形)以共价键结合,构成共价分子。由于每个碳原子均会放出一个电子,那些电子能够自由移动,因此石墨属于导电体。 石墨是其中一种最软的矿物。 它的用途包括制造铅笔芯和润滑剂。
玻璃珠:玻璃珠是把玻璃砂放在气炉(电炉)里烧结而成,多数为圆球形状
玻璃:一种较为透明的固体物质,在熔融时形成连续网络结构,冷却过程中粘度逐渐增大并硬化而不结晶的硅酸盐类非金属材料。普通玻璃化学氧化物的组成(Na2O·CaO·6SiO2),主要成份是二氧化硅。
PEM:是美国PECO公司的一种专利的工程材料(国内PET是涤纶的一种代号),因为我们从事过滤器的研制,所以设计过滤芯材料的选择,根据美国的资料,这是一种利用各种不同尺寸的纤维和每层不同密度的设计,精密组合而成,经过复杂的工序,而形成的,因此它具有极强的过滤性能与物化性能,而且它具有很好的环保效应.
氟磺酸质子交换膜:又名全氟磺酸离子交换膜,离子膜。 其原料是以聚四氟乙烯上嫁接的磺酸根基团,及全氟磺酸树脂。该树脂及膜的发明及商业化先行者是杜邦。 膜的制造工艺分为:融融挤膜法,铸膜法,以及流延法。