习题二
1. 设s?ds12gt,求
dt2.
t?2解:
dsds?2g. ?gt,故
dtt?2dt1,求f?(x0)x02.(1) 设f(x)?(x0?0);
解:f?(x0)?f?(x)x?x??1. 2x0(2) 设f(x)?x(x?1)(x?2)???(x?n),求f?(0).
解:
f?(0)?limf(x)?f(0)?lim(x?1)(x?2)???(x?n)x?0x?0 x?0?(?1)nn!3. 试求过点(3,8)且与曲线y?x2相切的直线方程.
解:曲线上任意一点(x,y)处的切线斜率为k?2x.因此过(3,8)且与曲线相切的直线方程
为:y?8?2x(x?3),且与曲线的交点可由方程组解得?为(2,4),(4,16)即为切点. 故切线方程为:y?4?4(x?2),?y?8?2x(x?3) 2y?x?y?16?8(x?4).
4.下列各题中均假定f?(x0)存在,按照导数定义观察下列极限,指出A表示什么.
f(x0??x)?f(x0)?A;
?x?0?xf(x0??x)?f(x0)f(x0??x)?f(x0)??lim??f?(x0) 解:?lim?x?0?x?0?x??x(1) lim故A??f?(x0) (2) f(x0)?0,limx?x0f(x)?A; x0?x 30
解:limf(x)xx??limf(x)x?xx??f?(x00)
0?x?x00?x故A??f?(x0) (3) limf(x0?h)?f(x0?h)h?0h?A.
解:
limf(x0?h)?f(x0?h)?f(x0?h)?f(x0)f(x0?h)?f(x0)?h?0h?limh?0??h?h???limf(x0?h)?f(x0)f(x0?h)?f(x0)h?0h?limh?0?h?f?(x0)?f?(x0)?2f?(x0)故A?2f?(x0). 5.求下列函数的导数: (1) y?x;
解:y??12x
(2) y?13x2;
???2?5解:y3x3
2(3) y?x?3x2x5; 1解:y?x2?253?2?x6
??16x?5y6.
6.讨论函数y?3x在x?0点处的连续性和可导性. 解:lim3x?0x?0?f(0),故函数在x?0处连续.
3又limx?0?2x?0x?0?limx?0x3??,故函数在x?0处不可导. 7. 如果f(x)为偶函数,且f?(0)存在,证明:f?(0)?0.
31
证明:
f?(0)??limf(?x)?f(0)x?0?x??limf(??x)?f(0)x?0?x
???limf(??x)?f(0)x?0??x??f?(0),故f?(0)?0.
8.求下列函数在x0处的左、右导数,从而证明函数在x0处不可导. (1) y???sinx,x?0,?x3,x?0,x0?0;
证明:ff(x)?f(0)??(0)?xlim?0?x?0?xlimsinx?0?x?1, ff(x)?f(0)x3??(0)?limx?0?x?0?xlim?0?x?0,
因f??(0)?f??(0),故函数在x0?0处不可导.
?(2) y??x?1?e1,x?0,xx?0?0;
?0,x?0,证明:ff(x)?f(0)??(0)?xlim?0?x?0?lim1?0?1?e1?0, xxff(x)?f(0)??(0)?limx?0?x?0?lim11?e1?1, x?0?x因f??(0)?f??(0),故函数在x0?0处不可导.
(3) y????x,x?1,??x2,x?1,x0?1.
证明:ff(x)?f(1)??(1)?limx?1?x?1?limx?1x?1?x?1?12, ?limf(x)?f(1)x?1?limx2f?1??(1)?1x?1?2, x?1?x?因f??(1)?f??(1),故函数在x0?1处不可导.
32
9.已知f(x)???sinx,?x,x?0,求f?(x). x?0,解:当x?0时,f?(x)?cosx,
当x?0时,f?(x)?1, sinx?0x?0当x?0时,f??(0)?limx?0?x?0?1, f??(0)?xlim?0?x?0?1,
故f?(0)?1.
综上所述知f?(x)???cosx,x?0,?1,x?0.
)???x210.设函数f(x,x?1,?ax?b,x?1.
为了使函数f(x)在x?1点处连续且可导,a,b应取什么值?
解:因lim2x?1?f(x)?limx?1?x?1?f(1) xlim?1?f(x)?lim(x?1?ax?b)?a?b 要使f(x)在x?1处连续,则有a?b?1,
又ff(x)?f(1)??(1)?limx?1?x?1?limx2?1x?1?x?1?2, fax?b?1ax?a??(1)?limx?1?x?1?limx?1?x?1?a, 要使f(x)在x?1处可导,则必须f??(1)?f??(1),
即a?2.故当a?2,b??1时,f(x)在x?1处连续且可导. 11. 讨论下列函数在指定点的连续性与可导性: (1) y?sinx,x?0;
解:因为limx?0y?0?yx?0,所以此函数在x?0处连续.
又ff(x)?f(0)??(0)?lim0?x?0?lim?sinxx?0?x??1,
x?ff(x)?f(0)sinx??(0)?xlim?0?x?0?xlim?0?x?1, f??(0)?f??(0),故此函数在x?0处不可导.
33
1?2xsin,x?0,?(2) y?? x?0; x? x?0,?0,1?0?y(0),故函数在x?0处连续.
x?0x1x2sinf(x)?f(0)x?0, 又y?(0)?lim?limx?0x?0x?0x故函数在x?0处可导.
解:因为limxsin2(3) y??解:因为
x?1,?x, x?1.
2?x,x?1,?limf(x)?lim(2?x)?1?x?1x?1x?1?x?1?limf(x)?limx?1?x?1
x?1?limf(x)?limf(x)?f(1)?1,故函数在x=1处连续. ?又f??(1)?lim?f(x)?f(1)x?1?lim?1
x?1x?1?x?1x?1f(x)?f(1)2?x?1f??(1)?lim?lim??1 ?x?1?x?1x?1x?1f??(1)?f??(1),故函数在x=1处不可导.
12. 证明:双曲线xy?a上任一点处的切线与两坐标轴构成的三角形的面积都等于2a.
证明:在双曲线上任取一点M(x0,y0),
22a2a2则y?, y???2, y?xxx?0a2??2,
x0a2则过M点的切线方程为:y?y0??2(x?x0)
x02x0y0x0a2令y?0?x?2?x0?2?x0?2x0
aa得切线与x轴的交点为(2x0,0),
xya2令x?0?y??y0?00?y0?2y0
x0x0得切线与y轴的交点为(0,2y0),
34
故 S??12x02y0?2x0y0?2a2. 212gt(m),求: 213. 垂直向上抛一物体,其上升高度与时间t的关系式为:h(t)?10t?⑴ 物体从t=1(s)到t=1.2(s)的平均速度:
1112?g?1.44?10?gh(1.2)?h(1)22??0.78 (m?s?1) 解:v??1.2?10.2⑵ 速度函数v(t); 解:v(t)?h?(t)?10?gt. ⑶ 物体何时到达最高. 解:令h?(t)?10?gt?0,得t?10 (s), g即物体到达最高点的时刻为t?10 s. g???(t).14. 设物体绕定轴旋转,在时间间隔[0,t]内,转过角度?,从而转角?是t的函数:
如果旋转是匀速的,那么称??定该物体在时刻t0的角速度?
解:设此角速度值为?,则
?t为该物体旋转的角速度.如果旋转是非匀速的,应怎样确
??lim?(t0??t)??(t0)?t?t?0???(t0).
?15. 设Q?Q(T)表示重1单位的金属从0C加热到T?C所吸收的热量,当金属从T?C升温到(T??T)?C时,所需热量为?Q?Q(T??T)?Q(T),?Q与?T之比称为T到
T??T的平均比热,试解答如下问题:
⑴ 如何定义在TC时,金属的比热; 解:??lim?Q(T??T)?Q(T)?Q?(T)
?T?0?T2⑵ 当Q(T)?aT?bT(其中a, b均为常数)时,求比热. 解:??Q?(T)?a?2bT. 16. 已知f(x)在x?x0点可导,证明: limh?0f(x0??h)?f(x0??h)?(???)f?(x0).
h35
证明: limf(x0??h)?f(x0??h)h?0h
??limf(x0?ah)?f(x)0f(x?0?h)?f(xh?0?h??lim)h 0h?0?? ??f?(x0)??f?(x0)?(???)f?(x
0).17. 求下列函数的导数: ⑴ S?3lnt?sinπ7; 解:S??3t ⑵ y?xlnx;
解:y??12xlnx?x?1x?12x(lnx?2) ⑶ y?(1?x2)?sinx?(1?sinx); 解:
y??2xsinx(1?sinx)?(1?x2)cosx(1?sinx)?(1?x2)sinx(?cosx) ?2xsin2x?2xsinx?cosx?x2cosx?sin2x?x2sin2x⑷ y?1?sinx1?cosx;
解:y???cosx(1?cosx)?(1?sinx)sinx1?(1?cosx)2?sinx?cosx(1?cosx)2 ⑸ y?tanx?eπ; 解:y??sec2x
⑹ y?secxx?3secx; 解:y??xsecxtanx?secxx2?3secxtanx ⑺ y?lnx?2lgx?3log2x;
解:y??1x?211123ln10?x?3?ln2?x?x(1?ln10?1n2) ⑻ y?11?x?x2.
36
解:y???(1?2x) 22(1?x?x)18. 求下列函数在给定点处的导数: ⑴ y?xsinx?1dycosx,求2dx;
πx?4解:y??sinx?xcosx?11sinx?sinx?xcosx 221πππ2πy?x?π?sin?cos?(1?)
24444243x2?,求f?(0)和f?(2); ⑵ f(x)?5?x5解:f?(x)?32?x
(5?x)25317 f?(2)? 2515 f?(0)?⑶ f(x)???5x?4, x?1,?4x?3x, x?1,2求f?(1).
2f(x)?f(1)4x?3x?1?lim?5 解:f??(1)?lim?x?1?x?1x?1x?1 f??(1)?lim?x?1f(x)?f(1)5x?4?1?lim?5 x?1?x?1x?1 故f?(1)?5.
19. 设p(x)?f1(x)f2(x)?fn(x)?0,且所有的函数都可导,证明:
fn?(x)p?(x)f1?(x)f2?(x)????? p(x)f1(x)f2(x)fn(x)证明:
p?(x)1?2)?fn(x)???f(x)1??[f1?(x)f(f(x)?2x)?fn(x)?f(x1)f(x2fn(x)]p(x)p(x) ?f1?(x)f1(x)?f2?(x)f2(x)???fn?(x)fn(x).
20. 求下列函数的导数:
⑴ y?e; ⑵ y?arctanx;
3x2 37
⑶ y?e2x+1; ⑷ y?(1?x2)?ln(x?1?x2);
⑸ y?x2?sin1x2; ⑹ y?cos2ax3(a为常数); ⑺ y?arccos1x; ⑻ y?(arcsinx22);
⑼ y?1?ln2x; ⑽ y?sinnx?cosnx; ⑾ y?1?x?1?x1?x?1?x; ⑿ y?arcsin1?x1?x;
⒀ y?lncosarctan(sinhx);
⒁ y?x2a22a?x2?2arcsinxa (a?0为常数). 解:⑴ y??3e3x;
⑵ y??2x1?x4; ⑶ y??e2x+1?112x+122x?1?2?2x?1e;
⑷ y??2x?ln(x?1?x2)?(1?x2)?1xx?1?x2?(1?221?x2)
?2xln(x?1?x2)?1?x2; ⑸ y??2xsin1x2?x2cos12x2?(?x3) ?2xsin121x2?xcosx2;
⑹ y??2cosax3?(?sinax3)?3ax2??3ax2sin2ax3;
⑺ y??1?(?1x?1?(1)2x2)?x2; x2?1x2arcsinx⑻ y??2arcsinx12??122?;
1?(x4?x22)2 38
⑼ y??121?ln2x?2lnx?1lnx; ?2xx1?lnx⑽ y??nsinn?1x?cosxcosnx?sinnx(?sinnx)?n?nsinn?1x?cos(n?1)x; ⑾
111?1?)(1?x?1?x)?(1?x?1?x)(?)21?x21?xy??21?x21?x( (1?x?1?x)2 ?11?x2?1?x2;⑿ y??1?1??(1?x)?(1?x)?11?1?x1?x(1?x)2?(1?x)2x(1?; 1?x2x)1?x⒀ y??1cosarctan(sinhx)?[?sinarctan(sinhx)]?11?(sinhx)2?coshx??tanhx;⒁ y??12a2?x2?x2?12a2?x2?(?2x)?a2112??a2?x2 .
1?(x)2aa21. y?arccosx?33?26?xx,求y?x?3.
解: y???1?1?1?x?(6?x)1?(x?32?236x2 3)2?xx y?x?3?13 22. 试求曲线y?e?x?3x?1在点(0,1)及点(-1,0)处的切线方程和法线方程.
解:y???e?x?3x?1?e?x?1(x?1)?233
y?x?0??23. y?x??1??
故在点(0,1)处的切线方程为:
y?1??23(x?0),即2x?3y?3?0 法线方程为:y?1?23(x?0),即3x?2y?2?0
39
在点(-1,0)处的切线方程为:x??1
法线方程为:y?0
23. 设f(x)可导,求下列函数y的导数
dydx: ⑴ y?f(x2) 解:y??2xf?(x2)
⑵ y?f(sin2x)?f(cos2x)
解:y??2sinxcosxf?(sin2x)?2cosx(?sinx)f?(cos2x) ?sin2x[f?(sin2x)?f?(cos2x)] 24. 求下列隐函数的导数:
⑴ x3?y3?3axy?0; ⑵ x?yln(xy);
⑶ xey?yex?10; ⑷ ln(x2?y2)?2arctanyx;⑸ xy?ex?y
解:⑴ 两边求导,得:
3x2?3y2?y??3ay?3axy??0
y??ay?x2解得y2?ax.
⑵ 两边求导,得:
1?y?ln(xy)?y?1xy(y?xy?) 解得 y??x?yx(lnx?lny?1).
⑶ 两边求导,得:
ey?xey?y??y?ex?yex?0
y?=?ey?yex解得 xey?ex. ⑷ 两边求导,得:
40
1x2?y2?(2x?2yy?)?2?1y?x?y1?(y?2x2 x) 解得 y?=x?yx?y. ⑸ 两边求导,得:
y?xy??ex?y(1?y?)
解得 y?=ex?y?yx?ex?y.
25. 用对数求导法求下列函数的导数: ⑴ y?x?2?(3?x)4(x?1)5;
解:y??y?(lny)??y?[12ln(x?2)?4ln(3?x)?5ln(x?1)]?
?x?2?(3?x)4(x?1)5[12(x?2)?43?x?5x?1]⑵ y?(sinx)cosx; 解:
y??y(lny)??y?(cosxlnsinx)? ?y[(?sinx)lnsinx?cosx?1sinx?cosx] 2 ?(sinx)cosx(cosxsinx?sinxlnsinx)⑶ y?e2x(x?3)(x?5)(x?4).
解:
y??y(lny)??y[2x?ln(x?3)?112ln(x?5)?2ln(x?4)]? ?e2x(x?3)
(x?5)(x?4)[2?1x?3?12(x?5)?12(x?4)].26. 求下列参数方程所确定的函数的导数
dydx: ⑴ ??x?acosbt?bsinat, (a,b为常数)
?y?asinbt?bcosat,
41
解:
dydydtabcosbt?absinat??dxdx?absinbt?abcosat
dtcosbt?sinat ?cosat?sinbt⑵ ?解:
?x??(1?sin?),
?y??cos?.dydyd?cos???sin?cos???sin? ???dxdx1?sin???(?cos?)1?sin???cos?d??x?etsint,πdy?t?27. 已知?求当时的值. tdx3??y?ecost,解:
dydydtetcost?etsintcost?sint ??t?tdxdxesint?ecostsint?costdtππcos?sindy33?3?2.
π?dxt?3sinπ?cosπ3328. 设f(x)?x?a?(x),其中a为常数,?(x)为连续函数,讨论f(x)在x?a处的可导性.
解:
f(x)?f(a)(x?a)?(x)?lim???(a)x?ax?ax?ax?a.
f(x)?f(a)(a?x)?(x)f??(a)?lim??lim????(a)x?ax?ax?ax?af??(a)?lim?故当?(a)?0时,f(x)在x?a处可导,且f?(a)?0 当?(a)?0时,f(x)在x?a处不可导.
229. 已知f(x)?max{x,3},求f?(x).
42
)??解:f(x??3, x?3 ??x2
, x?3 当x?3 时,f?(x)?0, 当x?3 时,f?(x)?2x,
fx2?3??(?3)?lim?x?3?lim?(x?3)??23x??3x??3f3?3
??(?3)?lim??3?x?3?0,x故f?(?3)不存在.
flim3?3??(3)???0,又 x?3x?3flimx2?3??(3)???3?lim?(x?3)?23,x?3xx?3故f?(3)不存在. 综上所述知
f?(x)????0, x?3. ??2x, x?3130. 若f(1x)?ex?x,求f?(x).
解:令
1x?t,则 11f(t)?et?t,即f(x)?ex?x
1f?(x)?ex?x(1?1x2). 31. 若f?(π3)?1,y?f(arccos1),求
dyxdxx?2.
解:
dy1dx?f?(arccos1x)(?)?(?11?(1)2x2)x
dydxx?2?f?(π3)411213?4?4?3?23.
43
32. 求函数y?解:
11?xln的反函数x??(y)的导数. 21?x1y?[ln(1?x)?ln(1?x)]2
dy1111?(?)?dx21?x1?x1?x2故反函数的导数为:
dx1??1?x2. dydydx33. 已知y?f(x)的导数f?(x)?2x?1,且f(?1)?1,求y?f(x)的反函数22(1?x?x)x??(y)的导数??(1).
解:?y?1时x??1,
1(1?x?x2)2故??(y)?, ?f?(x)2x?1[1?(?1)?(?1)2]2从而??(1)???1.
2?(?1)?134. 在括号内填入适当的函数,使等式成立:
⑴ d( )?costdt; ⑵ d( )?sin?xdx; ⑶ d( )?⑸ d( )?1dx; ⑷ d( )?e?2xdx; 1?x1dx; ⑹ d( )?sec23xdx; x1xlnxdx; ⑻ d( )?dx.
2x1?x⑺ d( )?解:
⑴ ?(sint)??cost ?d(sint?C)?costdt. ⑵ ?(?1?cos?x)???1??(?sin?x)?sin?x
44
?d(?1?cos?x?C)?sin?xdx.
⑶ ?[ln(1?x)]??11?x ?d[ln(1?x)?C]?11?xdx. ⑷ ?(?1e?2x)???1?(?2)e?2x=e?2x22 ?d(?12e?2x?C)?e?2xdx.
⑸ ?(2x)??2?12x=1x ?d(2x?C)?1xdx. ⑹ ?(1tan3x)??133?sec23x?3?sec23x ?d(1tan3x?C)?sec233xdx. ⑺ ?(12ln2x)??1112?2lnx?x?xlnx
?d(12ln2x?C)?1xlnxdx.
⑻ ?(?1?x2)???121?x2?(?2x)?x1?x2
?d(?1?x2?C)?x1?x2dx.
35. 根据下面所给的值,求函数y?x2?1的?y,dy及?y?dy:
⑴ 当x?1,?x?0.1时; 解:
?y?(x??x)2?1?(x2?1)?2x?x??x2?2?1?0.1?0.12?0.21dy?2x??x?2?1?0.1?0.2. ?y?dy?0.21?0.2?0.01.⑵ 当x?1,?x?0.01时. 解:
45
?y?2x?x??x2?2?1?0.01?0.012?0.0201dy?2x??x?2?1?0.01?0.02 ?y?dy?0.0201?0.02?0.0001.36. 求下列函数的微分:
⑴ y?xex; ⑵ y?lnxx; ⑶ y?cosx; ⑷ y?5lntanx;
⑸ y?8xx?6e2x; ⑹ y?arcsinx?(arctanx)2. 解:
⑴ dy?(xex)?dx?ex(1?x)dx;
1⑵ dy?(lnxx)?dx?(x?x?lnxx2)dx?1?lnxx2dx; ⑶ dy?(cosx)?dx?(?sinx)?12xdx??12xsinxdx;
⑷ dy?(5lntanx)?dx?(ln5?5lntanx?1tanx?sec2x)dx ?2ln5?5lntanx?1sin2xdx; ⑸ dy?(8xx?6e2x)?dx?[8xx(1?lnx)?12e2x]dx; ⑹
dy?[arcsinx?(arctanx)2]?dx?[12arcsinx?11?x2?2arctanx?11?x2]dx.;37. 求由下列方程确定的隐函数y?y(x)的微分dy:
⑴ y?1?xey; ⑵ x2y2a2?b2?1;
⑶ y?x?12siny; ⑷ y2?x?arccosy. 解:⑴ 对等式两端微分,得 dy?eydx?xd(ey) 即dy?eydx?xeydy
于是dy?ey1?xeydx.
46
⑵ 对等式两端微分,得
1a2?2xdx?1b2?2ydy?0 得dy??b2xa2ydx.
⑶ 对等式两端微分,得 dy?dx?12cosydy 解得dy?22?cosydx.
⑷ 对等式两端微分,得
2ydy?dx??11?y2dy
2解得dy?1?y1?2y1?y2dx.
38. 利用微分求下列函数的近似值:
⑴
38.1; ⑵ ln0.99;
⑶ arctan1.02.
解:⑴ 利用近似公式31?x?1?13x,有 38.1?38(1?11180)?231?80?2?(1?3?180)?2.0083. ⑵ 利用近似公式ln(1?x)?x,有
ln0.99?ln(1?0.01)??0.0100.
⑶ 取f(x)?arctanx,令x0?1,?x?0.02, 而f?(x)?11?x2,则 arctan1.02?arctan1?11?12?0.02 =0.7954.39. 设a?0,且b与an相比是很小的量,证明:
nan?b?a?bnan?1. 47
证明:利用近似公式n1?x?1?1nx,有 nan?b?an1?ban?a(1?1n?bban)?a?nan?1. 40. 利用一阶微分形式的不变性,求下列函数的微分,其中f和?均为可微函数:
⑴ y?f[x3??(x4)]; ⑵ y?f(1?2x)?3sinf(x). 解:⑴ dy?f?[x3??(x4)]d[x3??(x4)] =f?[x3??(x4)][3x2?4x3??(x4)]dx ⑵ dy?df(1?2x)?3dsinf(x)
=f?(1?2x)d(1?2x)?3cosf(x)df(x) ?f?(1?2x)(?2)dx?3cosf(x)f?(x)dx
?[?2f?(1?2x)?3cosf(x)f?(x)]dx.41. 求下列函数的高阶微分:
⑴ y?1?x2,求d2y; ⑵ y?xx,求d2y; ⑶ y?x?cos2x,求d10y; ⑷ y?x3?lnx,求dny; ⑸ r2?cos3??a2sin3??0(a为常数),求d2r. 解:⑴ dy?(1?x2)?dx?x1?x2dx,
3 d2y?(x2)?21?x2)?dx?(1?xdx2.
⑵ y??y(lny)??y(xlnx)??xx(1?lnx). y???xx[(1?lnx)2?1x],
故 d2y?xx[(1?lnx)2?1]dx2x (x?0). ⑶ 由莱布尼兹公式,得
d10y?(xcos2x)(10)dx1010?[?Ci(i)10xcos(10?i)2x]dx10i?0
?[210xcos(2x?10π2)?10?29?cos(2x?92π)]dx10 ??1024(xcos2x?5sin2x)dx10.
48
⑷ 由莱布尼兹公式,得
3(n?1)3(n?2)???dny?[x3?(lnx)(n)?C1?C2n(x)?(lnx)n(x)?(lnx)3(n?3)??? ?C3]dxnn(x)?(lnx)
(n?1)!n(n?1)2n?2(n?2)!n?3(n?3)!?n?3x?(?1)???6x?(?1) nn?1n?2?[x3?(?1)n?1?xx2x +n(n?1)(n?2)6?6?(?1)n?4(n?4)!xn?3]dxn?[(?1)n?6?(n?4)!x3?n]dxn.⑸ r2?a2tan3?
两端求导,得2rr??3a2tan2??sec2??r??32atan?sec2? 等式两端再求导得
2r?2?2r?r??32a(2?ta?n2?s?ec3?4?t 2?ansec) 解得r???311?4sin2?4a?tan??cos4? 故d2r?34a?11?4sin2?2tan??cos4?d?. 42. 求自由落体运动s(t)?12gt2的加速度. 解:s?(t)?gt
s??(t)?[s?(t)]??g即为加速度. 43. 求n次多项式y?ann?10x?a1x???an?1x?an的n阶导数.
解: y(n)?(a0xn)(n)?(an?11x)(n)???(a(n)n?1x)?(an)(n)=a0(xn)(n)=a0?n!
44. 设f(x)?ln(1?x),求f(n)(x).
解:?(lnx)(n)?(?1)n?1?(n?1)!xn ?f(n)(x)?[ln(1?x)](n)?(?1)n?1?(n?1)!(1?x)n.
45. 验证函数y?exsinx满足关系式y???2y??2y?0
证明:y??ex(sinx?cosx)
y???ex(sinx?cosx)?ex(cosx?sinx)?2cosx?ex
49
1x?limxsin1?0, 又limx?0sinxx?0xx2sin 故不能使用洛必达法则.
x?sinx1?cosx?lim不存在,
x??x?sinxx??1?cosxsinx1?x?sinxx?1. 而lim?limx??x?sinxx??sinx1?x⑶ ∵lim 故不能使用洛必达法则.
ex?e?xex?e?xex?e?x?limx?x?limx?x ⑷ ∵limxx???e?e?xx???e?ex???e?e 利用洛必达法则无法求得其极限.
ex?e?x1?e?2x?lim?1. 而limxx???e?e?xx???1?e?2x故答案选(2).
x2?mx?n?5,求常数m, n的值. 76. 设limx?1x?1x2?mx?n?5成立,则lim(x2?mx?n)?0,即1?m?n?0 解:要使limx?1x?1x?1x2?mx?n2x?m?lim?2?m?5 又limx?1x?1x?11得m?3,n??4 77. 设f(x)二阶可导,求limh?0f(x?h)?2f(x)?f(x?h). 2h解:
limf(x?h)?2f(x)?f(x?h)f?(x?h)?f?(x?h)?limh?0h?0h22h1f?(x?h)?f?(x)f?(x?h)?f?(x) ?lim[?]h?02h?h1f?(x?h)?f?(x)f?(x?h)?f?(x) ?[lim?lim]
h?0h?02h?h1 ?[f??(x)?f??(x)]2 ?f??(x). 65