绝密★启用前
2018年全国高中数学联赛河北(高二)预赛试题及详解
一、填空题:共8道小题,每小题8分,共64分.
1.已知集合A?{x,xy,x?y},B?{0,x,y}且A?B,则x2018?y2018? . 2.规定:?x?R,当且仅当n?x?n?1(n?N*)时,?x??n,则4?x??28?x??45?02的解集为 .
3.在平面直角坐标系中,若与点A?2,2?的距离为1,且与点B?m,0?的距离为3的直线恰有三条,则实数m的取值集合是 .
4.在矩形ABCD中,已知AB?3,BC?1.动点P在边CD上,设?PAB??,
?PBA??,则
PA?PB的最大值为 .
cos(???)5.已知x?1,y?1且lg2x?lg2y?lg10x2?lg10y2,则u?lgxy的最大值为 .
810、12,三条边的中点分别是B、C、D,将三个中6.若?A1A2A3的三边长分别为、
点两两连接得到三条中位线,此时所得图形是三棱锥A?BCD的表面展开图,则此三棱锥的外接球的表面积是 . 7.已知sin??1,则tan?的取值范围是 .
3cos??18.在?ABC中,AC?3,sinC?ksinA,(k?2),则?ABC的面积的最大值为 .
二、解答题
9.已知O是?ABC的外心,且3OA?4OB?5OC?0,求cos?BAC的值.
10.设?、???0,
????2??,证明:cos??cos??2sin?sin??32. 211.若a、b、c为正数且a?b?c?3,证明:ab?bc?ca?a?b?c?3.
12.若函数f(x)的定义域为?0,???且满足:①存在实数a?(1,??),使得f(a)?1.②当
m?R且x??0,???时,有f(xm)?mf(x)?0恒成立.
(1)证明:f??x?; ??f?x??f?y?(其中x?0,y?0)
y??(2)判断f(x)在?0,???上的单调性,并证明你的结论;
2(3)若当t?0时,不等式ft?4?f?t??1恒成立,求实数a的取值范围.
??
13.已知数列?an?中a1?112n?1*,an?1?an?n?1(n?N). 222(1)求数列?an?的通项公式; (2)求数列?an?的前n项和Sn.
14.如图,设?ABC的外接圆为O,?BAC的角平分线与BC交于点D,M为BC的中点.若?ADM的外接圆
Z分别与AB、AC交于P、Q,N为PQ的中点.
(1)证明:BP?CQ; (2)证明:MN//AD.
试卷答案
一、填空题
1. 2 2. {x|3?x?5} 3. {2?23,2?23} 4. ?3
5. 2?22 6. 77?3 7. (??,?2)(,2) 8. 3 23二、解答题
9.【解析】设?ABC的外接圆半径r?1,由已知得3OA??4OB?5OC,两边平方得
4OB?OC??,
5同理可得OA?OC??3,OA?OB?0. 52∴AB?AC?(OB?OA)?(OC?OA)?OB?OC?OA?OC?OA?OB?OA?2∴AB?(OB?OA)?2,AC?(OC?OA)?2?2?(?)?4, 52223516, 5∴cos?BAC?AB?ACAB?AC?452?165?10. 1010.【解析】cos??cos??2sin?sin?
?2cos???2cos???2?2(cos(???)?cos(???)) 2?2cos???2?2(1?cos(???)) 2?2cos???2???????2????2cos (2?2cos2)?2?2cos22222?32???2232. ?2(cos?)?2222????cos?1??2?当且仅当?时,即????时“=”成立.
4?cos????2?0??2211.【解析】证明:a?a?a2?3a3?3a,
同理b?b?b2?3b3?3b,c?c?c2?3c3?3c,
三式相加:2(a?b?c)?a2?b2?c2?3(a?b?c)?9?(a?b?c)2, ∴2(a?b?c)?(a?b?c)2?a2?b2?c2?2(ab?bc?ac), ∴ab?bc?ac?a?b?c;
又(a?b?c)2?(a?b?c)(1?1?1)?9,∴a?b?c?3, 综上可得ab?bc?ac?a?b?c?3.
12.【解析】(1)证明:∵x,y均为正数,故总存在实数m,n使得x?a,y?am333n ?a?1?,
xamm?n∴f()?f(n)?f(a)?(m?n)f(a)?m?n,
ya又f(x)?f(y)?f(am)?f(an)?mf(a)?nf(a)?m?n, ∴f??x???f?x??f?y?. ?y?x1x(a?1,??0), ?1,故可令1?a?,
x2x2(2)证明:设x1,x2??0,???,且x1?x2,则
则由(1)知f?x1??f?x2??f??x1???f(a)??f(a)???0, ??x2?即f?x1??f?x2?.∴f(x)在?0,???上单调递增.
t2?4)?f(a),又f(x)在?0,???上单调递增, (3)解:∵f(a)?1故原不等式化为f(tt2?444t2?4?a对于t?0恒成.∵?t??2t??4.∴(当且仅当t?2时“=”成立). tttt∴a?4,又a??1,???,∴a??1,4?. 13.【解析】(1)由an?1?12n?1an?n?1(n?N*)知:2n?1an?1?2nan?2n?1(n?N*), 22令bn?2nan,则b1?1且bn?1?bn?2n?1(n?N*).
11.【解析】证明:a?a?a2?3a3?3a,
同理b?b?b2?3b3?3b,c?c?c2?3c3?3c,
三式相加:2(a?b?c)?a2?b2?c2?3(a?b?c)?9?(a?b?c)2, ∴2(a?b?c)?(a?b?c)2?a2?b2?c2?2(ab?bc?ac), ∴ab?bc?ac?a?b?c;
又(a?b?c)2?(a?b?c)(1?1?1)?9,∴a?b?c?3, 综上可得ab?bc?ac?a?b?c?3.
12.【解析】(1)证明:∵x,y均为正数,故总存在实数m,n使得x?a,y?am333n ?a?1?,
xamm?n∴f()?f(n)?f(a)?(m?n)f(a)?m?n,
ya又f(x)?f(y)?f(am)?f(an)?mf(a)?nf(a)?m?n, ∴f??x???f?x??f?y?. ?y?x1x(a?1,??0), ?1,故可令1?a?,
x2x2(2)证明:设x1,x2??0,???,且x1?x2,则
则由(1)知f?x1??f?x2??f??x1???f(a)??f(a)???0, ??x2?即f?x1??f?x2?.∴f(x)在?0,???上单调递增.
t2?4)?f(a),又f(x)在?0,???上单调递增, (3)解:∵f(a)?1故原不等式化为f(tt2?444t2?4?a对于t?0恒成.∵?t??2t??4.∴(当且仅当t?2时“=”成立). tttt∴a?4,又a??1,???,∴a??1,4?. 13.【解析】(1)由an?1?12n?1an?n?1(n?N*)知:2n?1an?1?2nan?2n?1(n?N*), 22令bn?2nan,则b1?1且bn?1?bn?2n?1(n?N*).