第二单元 资金的时间价值习题(1)

2025-04-27

解析:即付年金也叫先付年金,是在期初发生的年金,故选项A不正确,普通年金是在期末发生的年金,而递延年金与永续年金是普通年金的两种特殊形式,因此,本题正确答案为BCD。

17、 在下列各项中,可以直接或间接利用普通年金终值系数计算出确切结果的项目有( )。

A、偿债基金 B、先付年金终值

C、永续年金现值 D、永续年金终值 答案: AB

解析:选项A,偿债基金系数与普通年金终值系数互为倒数;选项B,先付年金终值以普通年金终值为基础期数加1系数减1的结果;选项C,永续年金现值以普通年金现值的计算公式推导而出;选项D,永续年金没有终值。故正确答案为AB。

18、递延年金的特点( )。 A、第一期没有支付额 B、终值大小与递延期长短有关

C、终值计算与普通年金相同 D、现值计算与普通年金相同 答案: AC 解析:递延年金是指第一次收付款发生时间不在第一期期末的年金,因此递延年金第一期没有发生额,其终值的计算与普通年金终值的计算一样,与递延期无关,其现值的计算跟普通年金不同,要在普通年金现值计算的基础上再折现到第一期期初。

19、在期数和利率一定的条件下,下列等式不正确的是( )。 A、偿债基金系数=1/普通年金现值系数 B、 资本回收系数=1/普通年金终值系数 C、(1+i)n=1/(1+i)-n D、(P/F,i,n)× (F/P,i,n)=1

答案: AB

解析: 复利现值系数与复利终值系数互成倒数,所以选项C、D是正确的。偿债基金系数和普通年金终值系数互为倒数,资本回收系数与普通年金现值系数互为倒数,所以选项A、B不正确。

20、企业取得借款100万元,借款的年利率是8%,每半年复利一次,期限为5年,则该项借款的终值是( )。 A、100×(F/P,8%,5) B、100×(F/P,4%,10) C、100×(F/A,8%,5) D、100×(F/P,8.16%,5)

答案: BD

解析: 本题考查的是实际利率与名义利率之间的关系,每半年复利一次的情况下,复利终值的计算方法有两种,一种是使用半年的利率和半年的期限计算,即选项B;第二种方法是

使用年实际利率计算,本题中的年实际利率=(1+8%/2)2-1=8.16%,即选项D。

三、判断题

1、如果在3年内每年年初存入1000元,年利率为10%,单利计息,则3后可以取出的本利和为3300元。 答案:错

解析:该题针对“单利终值的计算”知识点进行考核。

2、某人拟购房,开发商提出两个方案:方案一是现在一次性付80万元;方案二是5年后付100万元。若目前银行贷款利率为7%(复利计息),则选择方案一付款较为有利。 (已知(F/P,7%,5)=1.4026) 答案:错

解析:方案一的终值=80×(F/P,7%,5)=112.208(万元)>100(万元)。 由于方案二的终值小于方案一的终值,所以应该选择方案二。 【该题针对“复利终值的计算”知识点进行考核】 3、年资本回收额与普通年金现值互为逆运算,资金回收系数与普通年金现值系数互为倒数。 答案:对 解析:

【该题针对“年资本回收额的计算”知识点进行考核】

4、如果以“年”作为基本计息期,每年计算一次复利,此时的年利率为名义利率,如果按照短于1年的计息期计算复利,并将全年利息额除以年初的本金,此时得到的利率为实际利率。

答案:对 解析:

【该题针对“利率的计算”知识点进行考核】

5、吴先生存入1000000元,奖励每年高考的文理科状元各10000元,奖学金每年发放一次。银行存款年利率为2%时才可以设定成永久性奖励基金。 答案:对

解析:由于每年都要拿出20000元,因此奖学金的性质是一项永续年金,其现值应为1000000元,因此:i=20000/1000000=2%。

【该题针对“利率的计算”知识点进行考核】

6、资金时间价值相当于没有风险情况下的社会平均资金利润率。 答案: 错

解析: 资金时间价值相当于没有风险、没有通货膨胀情况下的社会平均资金利润率。

7、利率不仅包含时间价值,而且也包含风险价值和通货膨胀补偿率。 答案: 对

解析: 财务管理活动总是或多或少地存在风险,而通货膨胀也是市场经济中客观存在的经济现象。因此,利率不仅包含时间价值,而且也包含风险价值和通货膨胀补偿率。

8、每半年付息一次的债券利息是一种年金的形式。 答案: 对

解析: 在年金中,系列等额收付的间隔期间只需要满足“相等”的条件即可,间隔期间完全可以不是一年。所以本题的说法正确。

9、即付年金的现值系数是在普通年金的现值系数的基础上系数+1,期数-1得到的。 答案: 对

解析: 即付年金的现值系数是在普通年金的现值系数的基础上期数-1,系数+1得到的。

10、递延年金有终值,终值的大小与递延期是有关的,在其他条件相同的情况下,递延期越长,则递延年金的终值越大。 答案: 错

解析: 递延年金有终值,但是终值的大小与递延期无关,递延年金的终值=年金×(F/A,i,n),其中n表示等额收付的次数(年金的个数),显然其大小与递延期m无关。 11、李先生希望在退休后每年还能获得8000元,以贴补家用,已知银行的存款利率为4%,那么李先生在退休时应该在银行存入200000元。 答案: 对

解析: 本题是已知永续年金8000元求现值,应该存入8000/4%=200000(元)。 也没有通货膨胀情况下的社会平均利润率,是利润平均化规律发生作用的结果。

12、某人贷款5000元,该项贷款的年利率是6%,每半年计息一次,则3年后该项贷款的本利和为5955元。 答案: 错

解析: 注意本年是每半年计息一次的情况,所以在计算终值时使用的折现率应是3%,期数应是半年的个数6,即复利终值=5000×(F/P,3%,6)=5970.5(元)。

13、 年资本回收额与普通年金现值互为逆运算,资金回收系数与普通年金现值系数互为倒数。

答案: 对

解析:根据资金时间价值内容可得出结论。

14、 在年金中,系列等额收付的间隔期间必须是一年。 答案: 错

解析:在年金中,系列等额收付的间隔期间只要相等即可,不一定是一年。

15、 只有现值没有终值的年金是递延年金。 答案: 错。

解析:递延年金是普通年金的特殊形式,有现值也有终值。

16、普通年金是指从第1期起,在一定时期内每期期初等额收付的系列款项。普通年金有时也简称年金。 答案: 错

解析:普通年金又称后付年金,是指从第1期起,在一定时期内每期期末等额收付的系列款

项。普通年金有时也简称年金。

17、在终值和计息期一定的情况下,贴现率越低,则复利现值越小。 答案: 错

解析:在终值和计息期一定的情况下,贴现率越低,则复利现值越大。

18、 吴先生存入1 000 000元,奖励每年高考的文理科状元各10 000元,奖学金每年发放一次。银行存款年利率大于2%时才可以设定成永久性奖励基金。 答案: 对

19、 凡是系列等额收付的年金形式,其间隔期间只需要满足“相等”的条件即可,间隔期间完全可以不是一年。 答案】 对。

解析:间隔期可以是半年,一个季度,或者一个月等。

20、普通年金是指从第1期起,在一定时期内每期期初等额收付的系列款项。普通年金有时也简称年金。 答案:错

解析:普通年金是指从第1期起,在一定时期内每期期末等额收付的系列款项。

21、 偿债基金系数和普通年金现值系数互为倒数。 答案: 错

解析: 偿债基金系数和普通年金终值系数互为倒数。

22、在终值与利率一定的情况下,计息期越多,复利现值就越小。 答案: 对 解析: 23、永续年金可视作期限无限的普通年金,终值与现值的计算可在普通年金的基础上求得。 答案:错

解析:永续年金只有现值没有终值。

24、即付年金的终值与现值,可在普通年金终值与现值的基础上乘(1+i)得到。 答案: 对

解析:根据预付年金终值与现值计算公式可得出结论。

25、递延年金现值的大小与递延期无关,因此计算方法与普通年金现值是一样的。 答案:错

解析:递延年金终值的大小与递延期无关,因此计算方法与普通年金终值是一样的。

26、资金时间价值,是指一定量资金在不同时点上的价值量差额。资金的时间价值来源于资金进入社会再生产过程后的价值增值。通常情况下,它相当于没有风险的社会平均利润率,是利润平均化规律发生作用的结果。 答案: 错

解析: 资金时间价值,是指一定量资金在不同时点上的价值量差额。资金的时间价值来源于资金进入社会再生产过程后的价值增值。通常情况下,它相当于没有风险也没有通货膨胀

情况下的社会平均利润率,是利润平均化规律发生作用的结果。

27、在期数一定的情况下,折现率越大,则年金现值系数越大。 答案: 错

解析: 计算现值的时候,折现率在分母上,所以在期数一定的情况下,折现率越大,则年金现值系数越小。

28、递延年金终值的大小与递延期是有关的,在其他条件相同的情况下,递延期越长,则递延年金的终值越大。 答案: 错

解析:递延年金终值的大小与递延期无关,递延年金的现值与递延期有关,递延期越长,递延年金现值越小。

第二单元 资金的时间价值

一、单项选择题

1、企业打算在未来三年每年年初存入2000元,年利率2%,单利计息,则在第三年年末存款的终值是()元。 A、6120.8 B、6243.2 C、6240 D、6606.68 答案:C 解析:本题是单利计息的情况,第三年年末该笔存款的终值=2000×(1+3×2%)+2000× (1+2×2%)+2000×(1+1×2%)=6240(元)。 【该题针对“单利终值的计算”知识点进行考核】

2、2010年1月1日,张先生采用分期付款方式购入商品房一套,每年年初付款15000元,分10年付清。张先生每年年初的付款有年金的特点,属于()。 A、普通年金 B、递延年金 C、即付年金 D、永续年金 答案:C 解析:

即付年金是从第一期开始,在一定时期内每期期初等额收付的系列款项,也称先付年金。 【该题针对“年金的辨析”知识点进行考核】

3、归国华侨郝先生想支持家乡建设,特地在祖籍所在县设立奖学金,奖学金每年发放一次,奖励每年高考的文理科状元各10000元,奖学金的基金存入中国银行。每年发放的奖学金有年金的特点,属于()。 A、普通年金 B、递延年金 C、即付年金 D、永续年金 答案:D 解析:

永续年金是指从第一期开始发生等额收付,收付期趋向于无穷大。 【该题针对“年金的辨析”知识点进行考核】

4、某企业于年初存入银行10000元,假定年利息率为12%,每年复利两次,则第五年末本利和为()元。(已知(F/P,6%,5)=1.3382,(F/P,6%,10)=1.7908,(F/P,12%,5)=1.7623,(F/P,12%,10)=3.1058) A.、13382 B、17623 C、17908

D、31058 答案: C

解析:

第五年末的本利和=10000×(F/P,6%,10)=17908(元)。 【该题针对“复利终值的计算”知识点进行考核】

5、某人第一年初存入银行400元,第二年初存入银行500元,第三年初存入银行400元,银行存款利率是5%,则在第三年年末,该人可以从银行取出()元。(已知(F/P,5%,3)=1.15 76,(F/P,5%,3)=1.1025,(F/P,5%,1)=1.0500) A、1434.29 B、1248.64 C、1324.04 D、1655.05 答案:A 解析:

第三年末的本利和=400×(F/P,5%,3)+500×(F/P,5%,2)+400×(F/P,5%,1) =400×1.1576+500×1.1025+400×1.0500=1434.29(元)。 【该题针对“复利终值的计算”知识点进行考核】

6、张先生资助一名贫困家庭的大学生,从2008年起,每年年末都为这名学生支付4000元,一直到这名大学生4年后毕业,假设银行的定期存款利率为3%,请问张先生支付的金额相当于4年后()元。(已知(F/A,3%,4)=4.1836) A、16734.4 B、12363.6 C、16943.58 D、16984 答案:A 解析:

这是已经年金求终值,F=4000×(F/A,3%,4)=4000×4.1836=16734.4(元)。【该题针对“普通年金终值的核算”知识点进行考核】

7、为给女儿上大学准备资金,王先生连续4年每年年末存入银行9000元,若银行存款利率为5%,则王先生在第4年年末能一次取出( )元。(已知(F/A,5%,4)=4.3101) A、36000 B、38790.9 C、37800 D、43200 答案:B 解析:

该题是计算普通年金终值,F=9000×(F/A,5%,4)=9000×4.3101=38790.9(元)。 【该题针对“普通年金终值的核算”知识点进行考核】

8、某人分期购买一套住房,每年年末支付40000元,分10次付清,假设年利率为2%,则该项分期付款相当于现在一次性支付()元。(已知(P/A,2%,10)=8.9826) A、400000 B、359304 C、43295 D、55265 答案:B 解析:

本题相当于求每年年末付款40000元,共计支付10年的年金现值,即40000×(P/A,2%,10)=40000×8.9826=359304(元)。

【该题针对“普通年金现值的计算”知识点进行考核】

9、某人现在从银行取得借款20000元,贷款利率为3%,要想在5年内还清,每年应该等额归还( )元。(P/A,3%,5)=4.5797 A、4003.17 B、4803.81 C、4367.10 D、5204.13 答案: C 解析: 本题是已知现值求年金,即计算年资本回收额,A=20000/(P/A,3%,5)=20000/4.5797=4367.10(元)。

10、甲企业拟对外投资一项目,项目开始时一次性总投资500万元,建设期为2年,使用期为6年。若企业要求的最低年投资报酬率为8%,则该企业每年应从该项目获得的最低现金流入为()万元。(已知年利率为8%时,8年的年金现值系数为5.7466,2年的年金现值系数为 1.7833)

A、83.33 B、87.01 C、126.16 D、280.38 答案:C 解析:

本题属于根据现值求年金的问题,A=500/(5.7466-1.7833)=126.16(万元)。 【该题针对“年资本回收额的计算”知识点进行考核】

11、某公司决定连续5年每年年初存入银行10万元以备5年后使用,假设银行存款利率为 2%,则5年后该公司可以使用的资金额为()万元。(已知(F/A,2%,5)=5.2040) A、53.08 B、51.22 C、52.04 D、51.00 答案:A 解析:

本题是计算即付年金终值的问题,5年后的本利和=10×(F/A,2%,5)×(1+2%)=53.08

(万元)。

【该题针对“即付年金的核算”知识点进行考核】

18、已知(F/A,10%,9)=13.579,(F/A,10%,11)=18.531。则10年,10%的即付年金终值系数为( )。 A、17.531 B、15.937 C.、14.579 D、12.579 答案:A 解析:

即付年金终值系数与普通年金终值系数相比期数加1,系数减1,所以10年,10%的即付年金终值系数=18.531-1=17.531。

【该题针对“即付年金的核算”知识点进行考核】

12、有一项从第3年年末开始发生,每年50万元连续5年的递延年金,利率为10%,则该递延年金的递延期和终值分别为()。(已知(F/A,10%,5)=6.1051) A、2期和248.77万元 B、2期和305.255万元 C、3期和290.33万元 D、3期和315.22万元 答案:B

解析:递延年金的第一次收付发生在第3期末,递延期为2。终值F=50× (F/A,10%,5)=50×6.1051=305.255(万元)。 【该题针对“递延年金终值的计算”知识点进行考核】

13、有一笔年金,前3年没有流入,后5年每年年初流入10万元,折现率为10%,请问这笔年金的现值是()元。(已知(P/A,10%,5)=3.7908,(P/F,10%,2)=0.8264) A、379080

B、313271.71 C、361642.32 D、437611.71 答案:B

解析:现值=100000×(P/A,10%,5)×(P/F,10%,2)=100000×3.7908×

0.8264=313271.71 注意:第四年初即第三年末,所以年金是从第三年末开始流入的,递延期为2年

【该题针对“递延年金现值的计算”知识点进行考核】

14、某项永久性奖学金,每年计划颁发10万元奖金。若年利率为8%,该奖学金的本金应为

( )元。

A、6250000 B、5000000 C、1250000

D、4000000 答案:C

解析:本题考点是计算永续年金现值:P=A/i=10/8%=125(万元)。 【该题针对“永续年金的核算”知识点进行考核】

15、某人希望在5年末取得本利和20000元,则在年利率为2%,单利计息的方式下,此人现在应当存入银行( )元。 A、18114 B、18181.82 C、18004 D、18000 答案B

解析现在应当存入银行的数额=20000/(1+5×2%)=18181.82(元)。

16、某人目前向银行存入1000元,银行存款年利率为2%,在复利计息的方式下,5年后此人可以从银行取出( )元。 A、1100 B、1104.1 C、1204 D、1106.1 答案:B

解析:五年后可以取出的数额即存款的本利和=1000×(F/P,2%,5)=1104.1(元)。

17、某人进行一项投资,预计6年后会获得收益880元,在年利率为5%的情况下,这笔收益的现值为( )元。 A、4466.62 B、656.66 C、670.56 D、4455.66 答案: B

解析: 收益的现值=880×(P/F,5%,6)=656.66(元)。

18、企业有一笔5年后到期的贷款,到期值是15000元,假设贷款年利率为3%,则企业为偿还借款建立的偿债基金为( )元。 A、2825.34 B、3275.32 C、3225.23 D、2845.34 答案: A

解析: 建立的偿债基金=15000/(F/A,3%,5)=2825.34(元)。

19、某人分期购买一辆汽车,每年年末支付10000元,分5次付清,假设年利率为5%,则该项分期付款相当于现在一次性支付( )元。 A、55256 B、43259 C、43295

D、55265 答案: C

解析: 本题相当于求每年年末付款10000元,共计支付5年的年金现值,即10000×(P/A,5%,5)=43295(元)。

20、某企业进行一项投资,目前支付的投资额是10000元,预计在未来6年内收回投资,在年利率是6%的情况下,为了使该项投资是合算的,那么企业每年至少应当收回( )元。 A、1433.63 B、1443.63 C、2023.64 D、2033.64 答案: D

解析: 本题是投资回收额的计算问题,每年的投资回收额=10000/(P/A,6%,6)=2033.64(元)。 21、某一项年金前4年没有流入,后5年每年年初流入1000元,则该项年金的递延期是( )年。 A、4 B、3 C、2 D、1

答案: B

解析: 前4年没有流入,后5年每年年初流入1000元,说明该项年金第一次流入发生在第5年年初,即第4年年末,所以递延期应是4-1=3年。

22、某人拟进行一项投资,希望进行该项投资后每半年都可以获得1000元的收入,年收益率为10%,则目前的投资额应是( )元。 A、10000 B、11000 C、20000 D、21000 答案: C

解析: 本题是永续年金求现值的问题,注意是每半年可以获得1000元,所以折现率应当使用半年的收益率即5%,所以投资额=1000/5%=20000(元)。

23、某人在第一年、第二年、第三年年初分别存入1000元,年利率2%,单利计息的情况下,在第三年年末此人可以取出( )元。 A、3120 B、3060.4 C、3121.6 D、3130 答案: A 解析: 注意本题是单利计息的情况,所以并不是求即付年金终值的问题,单利终值=1000×(1+3×2%)+1000×(1+2×2%)+1000×(1+2%)=3120(元)。

24、已知利率为10%的一期、两期、三期的复利现值系数分别是0.9091、0.8264、0.7513,则可以判断利率为10%,3年期的年金现值系数为( )。 A、2.5436 B、2.4868 C、2.855 D、2.4342 答案: B

解析: 利率为10%,3年期的年金现值系数=(1+10%)-3+(1+10%)-2+(1+10%)-1=0.7513+0.8264+0.9091=2.4868。

25、某人于第一年年初向银行借款30000元,预计在未来每年年末偿还借款6000元,连续10年还清,则该项贷款的年利率为( )。 A、20% B、14% C、16.13% D、15.13% 答案: D

解析: 根据题目的条件可知:30000=6000×(P/A,i,10),所以(P/A,i,10)=5,经查表可知:(P/A,14%,10)=5.2161, (P/A,16%,10)=4.8332,使用内插法计算可知:(16%-i)/(16%-14%)=(5-4.8332)/(5.2161- 4.8332),解得i=15.13%。

26、某人拟进行一项投资,投资额为1000元,该项投资每半年可以给投资者带来20元的收益,则该项投资的年实际报酬率为( )。 A、4% B、4.04% C、6% D、5% 答案: B

解析:根据题目条件可知半年的报酬率=20/1000=2%,所以年实际报酬率=(1+2%)2-1=4.04%。

27、资金时间价值是指没有风险和通货膨胀条件下的( ) A、 企业的成本利润率 B、企业的销售利润率

C、利润率 D、社会平均资金利润率 答案:D

解析:资金时间价值是指没有风险和通货膨胀条件下的平均利率。

28、存本取息可视为( )。 A、普通年金 B、递延年金

C.、即付年金

D、永续年金 答案: A

解析:利息可以是时间间隔相等,金额相同,并且连续发生的一些列资金,发生时间在每年年末。所以可以看做是普通年金。

29、普通年金终值系数的倒数称为( )。 A、复利终值系数 B、.偿债基金系数

C、普通年金现值系数 D、回收系数 答案: B

解析:普通年金终值系数与偿债基金系数互为倒数。

30、永续年金是( )的特殊形式。 A、普通年金 B、先付年金

C、即付年金 D、递延年金 答案: A

解析:永续年金是普通年金的特殊形式

31、某公司拟于5年后一次还清所欠债务100 000元,假定银行利息率为10%,5年10%的年金终值系数为6.1051,5年10%的年金现值系数为3.7908,则应从现在起每年末等额存入银行的偿债基金为( )元。 A、16 379.75 B、26 379.66 C.、379 080 D、610 510 答案A

解析偿债基金系数与普通年金终值系数互为倒数,本题中,每年末等额存入银行的偿债基金=100000/6.1051=16 379.75 元。

32、 甲企业拟对外投资一项目,项目开始时一次性总投资500万元,建设期为2年,使用期为6年。若企业要求的最低年投资报酬率为8%,则该企业每年应从该项目获得的最低现金流入为( )万元。(已知年利率为8%时,8年的年金现值系数为5.7466,2年的年金现值系数为1.7833)

A、83.33 B、87.01 C、126.16 D.、280.38 答案C

解析本题考的知识点为递延年金。根据题意,已知递延年金现值P=500万元,间隔期m=2年,年金发生期n=6年,年金总期数N=8年,A=P/[(P/A,i,8)-(P/A,i,2)]=500/(5.7466-1.7833)=126.16万元

33、 企业打算在未来三年每年年初存入2 000元,年利率2%,单利计息,则在第三年年末

存款的终值是( )元。 A、6 120.8 B、6 243.2 C、6 240 D、6 606.6 答案;C

解析:本题为单利计息,F=2000×0.02×(3+2+1)=6240元。

34、 王大爷是位热心于公益事业的人,自2010年12月底开始,他每年年底都要向一位失学儿童捐款,帮助这位失学儿童从小学一年级读完九年义务教育。王大爷每年向失学儿童的捐款有年金的特点,属于( )。 A、.普通年金 B.、递延年金 C、即付年金 D、永续年金 答案: A

解析:普通年金是指一定时期内每期期末等额收付的系列款项。

35、A公司资助一名贫困家庭的大学生,从2011年起,每年年末都为这名学生支付4 000元,一直到这名大学生4年后毕业,假设银行的定期存款利率为3%,请问A公司支付的金额相当于4年后( )元。(已知(F/A,3%,4)=4.1836) A、16 734.4 B、12 363.6 C.、16 943.58 D、16 984 答案:A

解析:根据题意,F=A×(F/A,i,4)=4×4.1836=16 734.4元。

36、 某公司拟在5年后用10 000万元购买一套生产设备,从现在起每年末等额存入银行一笔款项。假设银行利率为10%,(F/A,10%,5)=6.1051。则每年需存入( )万元。 A、1 863 B、1 000 C、1 368 D、1 638 答案:D

解析:这是一笔普通年金,A=F/(F/A,10%,5)=F/6.1051=1638万元。

37、 已知(F/A,10%,9)=13.579,(F/A,10%,11)=18.531。则10年,10%的即付年金终值系数为( )。 A、17.531 B、15.937 C、14.579 D、12.579 答案:A

解析:即付年金终值系数为普通年金终值系数期数加1再系数减1的结果

38、 某项永久性奖学金,每年计划颁发100 000元奖金。若年利率为8%,该奖学金的本金应为( )元。

A、6 250 000 B、5 000 000 C、1 250 000 D、.4 000 000 答案:C

解析:该款项为永续年金,只有现值没有终值。现值P=100000/8%=1250000元。

39、 某公司第一年初借款20 000元,每年年末还本付息额均为4 000元,连续9年还清。则借款利率为( )。(已知(P/A,12%,9)=5.3282,(P/A,14%,9)=4.9464) A、12.6% B、18.6% C、13.33% D、13.72% 答案:D

解析:利用内插法可知,i=13.72%.

40、 5年期、利率为7%的普通年金现值系数等于4.1002,4年期、利率为7%的普通年金现值系数等于3.3872,,6年期、利率为7%的普通年金现值系数等于4.7665,则5年期、利率为7%的即付年金现值系数为( )。 A、5.1002 B、4.3872 C、3.7665 D、5.7665 答案: B

解析:即付年金现值系数为普通年金现值系数期数减1再系数加1的结果。

41.企业打算在未来三年每年年初存入2000元,年利率2%,单利计息,则在第三年年末存款的终值是( )元。 A、6120.8 B、6243.2 C、.6240 D、6606.6 答案: C

解析: 由于本题是单利计息的情况,所以不是简单的年金求终值的问题,第三年年末该笔存款的终值=2000×(1+3×2%)+2000×(1+2×2%)+2000×(1+1×2%)=6240(元

42.某人分期购买一套住房,每年年末支付50000元,分10次付清,假设年利率为3%,则该项分期付款相当于现在一次性支付( )元。 (P/A,3%,10)=8.5302 A、469161 B、387736

C、426510 D、.504057 答案: C

解析: 本题是是已知年金求现值,P=50000×8.5302=426510(元)。

43.某一项年金前4年没有流入,后5年每年年初流入4000元,则该项年金的递延期是( )年。

A、4 B、3 C、2 D、.5 答案: B

解析: 前4年没有流入,后5年指的是从第5年开始的,第5年年初相当于第4年年末,这项年金相当于是从第4年末开始流入的,所以,递延期为3年。

44.关于递延年金,下列说法错误的是( )。

A、递延年金是指隔若干期以后才开始发生的系列等额收付款项 B、递延年金没有终值

C、.递延年金现值的大小与递延期有关,递延期越长,现值越小 D.、递延年金终值与递延期无关 答案: B

解析: 递延年金是指隔若干期以后才开始发生的系列等额收付款项,递延年金存在终值,其终值的计算与普通年金是相同的,终值的大小与递延期无关;但是递延年金的现值与递延期是有关的,递延期越长,递延年金的现值越小,所以选项B的说法是错误的。

45.下列各项中,代表即付年金终值系数的是( )。 A、[(F/A,i,n+1)+1] B、[(F/A,i,n+1)-1]

C、 [(F/A,i,n-1)-1] D、[(F/A,i,n-1)+1]

答案: B

解析: 即付年金终值系数与普通年金终值系数相比期数加1,系数减1。

46、甲希望在10年后获得80000元,已知银行存款利率为2%,那么为了达到这个目标,甲从现在开始,共计存10次,每年末应该存入( )元。 (F/A,2%,10)=10.95 A、8706.24 B、6697.11 C.、8036.53 D、7305.94 答案: D

解析: 这是已知终值求年金,即计算偿债基金。A=80000/(F/A,2%,10)=80000/10.95=7305.94(元)。

二、多项选择题

1、有一笔递延年金,前两年没有现金流入,后四年每年年初流入100万元,折现率为10%,则关于其现值的计算表达式正确的有( )。

A、100×(P/F,10%,2)+100×(P/F,10%,3)+100×(P/F,10%,4)+100×(P/F,10%,5)

B、100×[(P/A,10%,6)-(P/A,10%,2)] C、100×[(P/A,10%,3)+1]×(P/F,10%,2) D、100×[(F/A,10%,5)-1]×(P/F,10%,6) 答案:ACD 解析:本题中从第3年初开始每年有100万元流入,直到第6年初。选项A的表达式是根据“递延年金现值=各项流入的复利现值之和”得出的,“100×(P/F,10%,2)”表示的是第3年初的100的复利现值,“100×(P/F,10%,3)”表示的是第4年初的100的复利现值,“100×(P/F,10%,4)”表示的是第5年初的100的复利现值,“100×(P/F,10%,5)”表示的是第6年初的100的复利现值。选项B,本题中共计有4个100,因此,n=4;但是注意,第1笔流入发生在第3年初,相当于第2年末,而如果是普通年金则第1笔流入发生在第1年末,所以,本题的递延期m=2-1=1,因此,m+n=1+4=5,所以,选项B的正确表达式应该是100×[(P/A,10%,5)-(P/A,10%,1)]。选项C和选项D是把这4笔现金流入当作预付年金考虑的,100×[(P/A,10%,3)+1]表示的是预付年金现值,表示的是第3年初的现值,因此,计算递延年金现值(即第1年初的现值)时还应该再折现2期,所以,选项C的表达式正确;100×[(F/A,10%,5)-1]表示的是预付年金的终值,即第6年末的终值,因此,计算递延年金现值(即第1年初的现值)时还应该再复利折现6期,即选项D的表达式正确。

【该题针对“递延年金现值的计算”知识点进行考核】

2、某债券的面值为1000元,每半年发放40元的利息,那么下列说法正确的有()。 A、半年的利率为4% B、年票面利率为8% C、年实际利率为8% D、年实际利率为8.16% 答案:ABD

解析:面值为1000元,每半年发放40元的利息,所以半年的利率为(40/1000)×100%=4%,年票面利率=4%×2=8%,年实际利率=(1+4%)2-1=8.16%。 3、下列有关递延年金现值的计算式中正确的有()(假设:m为递延期,n为连续收付期数)。 A、P=A×(P/A,i,n)×(P/F,i,m) B、P=A×(F/A,i,n)×(P/A,i,m) C、P=A×[(P/A,i,m+n)-(P/A,i,m)] D、.P=A×(F/A,i,n)×(P/F,i,n+m) 答案:ACD 解析:

递延年金有三种计算方法:第一种方法:先把递延期以后的年金套用普通年金公式求现值,

这时求出来的现值是第一个等额收付前一期期末的数值,距离递延年金的现值点还有m期,再向前按照复利现值公式折现m期即可,计算公式为P= A×(P/A,i,n)×(P/F,i,m);第二种方法:把递延期每期期末都当作有等额的收付A,把递延期和以后各期看成是一个普通年金,计算出这个普通年金的现值,再把递延期多算的年金现值减掉即可,计算公式为P=A×[(P/A,i,m+n)-(P/A,i,m)];第三种方法:先求递延年金终值,再折现为现值,计算公式为P=A×(F/A,i,n)× (P/F,i,n+m)。

【该题针对“递延年金现值的计算”知识点进行考核】

4、下列各项中,属于年金形式的有()。 A、.养老金

B、等额分期付款

C、.零存整取的零存额

D.、按照加速折旧法计提的折旧 答案:ABC 解析:

年金是指一定时期内每期等额收付的系列款项,年金的形式多种多样,如保险费、 养老金、折旧(直线法计提)、租金、等额分期收(付)款以及零存整取或者整存零取储蓄等等。注意按照加速折旧法计提的每期的折旧额是不同的,所以不属于年金的形式。 【该题针对“年金的辨析”知识点进行考核】

5、年金是指一定时期内每期等额收付的系列款项,下列各项中属于年金形式的是( )。 A、按照直线法计提的折旧 B、等额分期付款 C、融资租赁的租金 D、养老金 答案: ABCD

解析: 年金是指一定时期内每期等额收付的系列款项,年金的形式多种多样,如保险费、养老金、折旧、租金、等额分期收(付)款以及零存整取或者整存零取储蓄等等。

6、某人决定在未来5年内每年年初存入银行1000元(共存5次),年利率为2%,则在第5年年末能一次性取出的款项额计算正确的是( )。 A、1000×(F/A,2%,5)

B、1000×(F/A,2%,5)×(1+2%) C、1000×(F/A,2%,5)×(F/P,2%,1) D、1000×[(F/A,2%,6)-1] 答案: BCD

解析: 本题是即付年金求终值的问题,即付年金终值系数有两种计算方法:一是普通年金终值系数×(1+i),即选项BC;一种是在普通年金终值系数的基础上期数+1,系数-1,即选项D。

7、某项年金前三年没有流入,从第四年开始每年年末流入1000元共计4次,假设年利率为8%,则该递延年金现值的计算公式正确的是( )。 A、1000×(P/A,8%,4)×(P/F,8%,4)

B、1000×[(P/A,8%,8)-(P/A,8%,4)] C.、1000×[(P/A,8%,7)-(P/A,8%,3)] D、1000×(F/A,8%,4)×(P/F,8%,7) 答案: CD

解析: 递延 年金第一次流入发生在第四年年末,所以递延年金的递延期m=4-1=3年,n=4,所以递延年金的现值=1000×(P/A,8%,4)×(P/F, 8%,3)=1000×[(P/A,8%,7)-(P/A,8%,3)]=1000×(F/A,8%,4)×(P/F,8%,7)。

8、下列说法正确的是( )。

A、.普通年金终值系数和偿债基金系数互为倒数 B、.普通年金终值系数和普通年金现值系数互为倒数 C.、复利终值系数和复利现值系数互为倒数

D.、普通年金现值系数和资本回收系数互为倒数 答案: ACD

解析: 普通年金终值系数(F/A,i,n)=[(F/P,i,n)-1]/i,偿债基金系数(A/F,i,n)=i/[(F/P,i,n)-1],普通年金现值系数 (P/A,i,n)=[1-(P/F,i,n)]/i,资本回收系数(A/P,i,n)=i/[1-(P/F,i,n)],复利终值系数(F/P,i, n)=(1

n-n

+i),复利现值系数(P/F,i,n)=(1+i)。

9、按年金每次收付发生的时点不同,主要有( )。 A、普通年金 B、预付年金

C、递延年金 D、.永续年金 答案: ABCD

解析:按年金每次收付发生的时点不同,可分为普通年金、预付年金、 递延年金和永续年金等四种。

10、下列说法中,正确的有( )。

A、复利终值系数和复利现值系数互为倒数

B、普通年金终值系数和普通年金现值系数互为倒数 C、普通年金终值系数和偿债基金系数互为倒数 D、普通年金现值系数和资本回收系数互为倒数 答案: ACD

解析:普通年金终值系数与普通年金现值系数之间没有关系。

11、对于资金时间价值,下列表述正确的有( )。 A、.有单利和复利两种计算方式 B、可以直接用短期国债利率来表示

C.、是指一定量资金在不同时点上的价值量差额

D、相当于没有风险和没有通货膨胀条件下的社会平均资金利润率 答案: ACD

解析:没有通货膨胀时,资金的时间价值可以用国债利率来表示,故选项B不正确。

12、 企业取得借款100万元,借款的年利率是8%,每半年复利一次,期限为5年,则该项借款的终值计算式正确的有( )。 A、100×(F/P,8%,5) B、100×(F/P,4%,10)

C、100×(F/A,8%,5) D、100×(F/P,8.16%,5) 答案BD

解析:该题针对“名义利率与实际利率的换算”知识点进行考核。

13、 下列各项中,属于年金形式的有( )。 A、每年末等额收取的养老金 B、等额分期付款 C、零存整取的零存额 D、零存整取的整取额 答案;ABC

解析:年金是指一定时期内每次等额收付的系列款项,选项ABC都具备年金的特点,选项D为一次性款项,不属于年金。

14、 下列有关即付年金与普通年金的表述正确的有( )。 A.、即付年金终值系数等于普通年金终值系数乘以(1+i);F=A(F/A,i,n)(1+i) B、即付年金终值系数与普通年金终值系数的关系:期数+1,系数-1;F=A[(F/A,i,n+1)-1]

C、.即付年金现值系数等于普通年金现值系数乘以(1+i);P=A×(P/A,i,n)×(1+i) D、.即付年金现值系数与普通年金现值系数的关系:期数-1,系数+1;P=A[(P/A,i,n-1)+1] 答案: ABCD

解析:该题针对“即付年金终值与现值”知识点进行考核。 15、 有一笔递延年金,前两年没有现金流入,后四年每年年末流入100万元,折现率为10%,则关于其现值的计算表达式正确的有( )。

A、100×(P/F,10%,3)+100×(P/F,10%,4)+100×(P/F,10%,5)+100×(P/F,10%,6)

B、100×[(P/A,10%,6)-(P/A,10%,2)] C、.100×(P/A,10%,4)×(P/F,10%,2) D、100×(F/A,10%,4)×(P/F,10%,6) 答案: ABCD

解析:该题针对“递延年金现值的计算”知识点进行考核

16、属于在期末发生的年金形式有( )。 A、即付年金 B、永续年金

C、普通年金 D、.递延年金 答案: BCD


第二单元 资金的时间价值习题(1).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:2024年秋新部编人教版小学三年级上册语文第8课《去年的树》第9课

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219