2024数列经典综合题

2025-04-27

当n?2时,易知0?xn?1?1,?1?xn?1?2,xn?11?

1?xn?12?(1?xn)(1?xn?1)?(1?15)(1?xn?1)?2?xn?1?

1?xn?12?xn?1?xn?xn?xn?111?? 1?xn1?xn?1(1?xn)(1?xn?1)2222n-1xn?xn?1?()xn?1?xn?2???()x2?x1555 12n-1?()65?例47 已知函数F?x??3x?2?1?,?x??. 2x?1?2?(I)求F??1??2??2008??F?...?F?????;

?2009??2009??2009?(II)已知数列?an?满足a1?2,an?1?F?an?,求数列?an?的通项公式; (Ⅲ) 求证:a1a2a3...an?2n?1.

解:(?)因为F?x??F?1?x??3x?23?1?x??2??3 2x?12?1?x??1所以设S=F??1??2??2008??F?...?F?????;..........(1)

200920092009???????2008??2007??1??F?...?F????????.(2)

?2009??2009??2009?

S=F?(1)+(2)得:

??1???2008??2008????2??2007???1??2S??F??F?F?F?...?F?F????????????????200920092009200920092009??????????????????

=3?2008?6024,

所以S=3012

(??)由an?1?F?an?两边同减去1,得

an?1?1?3an?2a?1?1?n

2an?12an?1所以

1an?1?11?2an?12?an?1??11??2?,

an?1an?1an?1所以

?1?11?2,??1为首项的等差数列, ?是以2为公差以

an?1?1an?1a1?1?an?1??所以

112n ?2??n?1??2?2n?1?an?1??an?12n?12n?12?????因为?2n?

所以

??2n??1??2n?1??2n?1?

22n2n?123452n2n?1? ??,?,...?2n?12n12342n?12n所以a1a2a3...an??a1a2a3...an?2?22442n2n???......? 11332n?12n?1>23452n2n?1???......??2n?1 12342n?12nk?例48 过点P(1,0)作曲线C:y?x(x?(0,??),k?N,k?1)的切线,切点为M1,设M1在x轴上的投影是点P1。又过点P1作曲线C的切线,切点为M2,设M2在x轴上的投影是点P2,?。依此下去,得到一系列点M1,M2?,Mn,?,设它们的横坐标a1,a2,?,an,?,构成数列为?an?。

(1)求证数列?an?是等比数列,并求其通项公式; (2)求证:an?1?n; k?1n,求数列?bn?的前n项和Sn。 an (3)当k?2时,令bn?kk?1k解:(1)对y?x求导数,得y?kx,切点是Mn(an,an)的切线方程是 kk?1y?an?kan(x?an)

当n=1时,切线过点P(1,0),即0当n>1时,切线过点pn?1(an?1,0),即0所以数列?an?是首项a1??a1k?ka1k?1(1?a),得a1?k; k?1ank?. an?1k?1kk?1?an?kan(an?1?an),得kk,公比为的等比数列, k?1k?1所以数列?an?的通项公式为an?( (2)应用二项公式定理,得

kn),n?N? k?1kn1n1121n012n)?(1?)?Cn?Cn?Cn()???Cn()k?1k?1k?1k?1k?1

n?1?.?????(8分)k?1an?((3)当

n123n, ??.数列b的前项n项和S??????nn222232n2n11123n同乘以,得Sn?2?3?4???n?1.

222222k?2时,an?2n,bn?两式相减,得

11(1?n)11121n2?n?1?1?n Sn??2?3???n?n?1?212222222n?12n2n?11?2n?2所以Sn?2?n

2例49 设数列?an?的前n项和为Sn,对任意的正整数n,都有an?5Sn?1成立,记

bn?4?an(n?N*)。 1?an(I)求数列?bn?的通项公式;

(II)记cn?b2n?b2n?1(n?N),设数列?cn?的前n项和为Tn,求证:对任意正整数n都有

*Tn?3; 2(III)设数列?bn?的前n项和为Rn。已知正实数?满足:对任意正整数n,Rn??n恒成立,求?的最小值。

解:(Ⅰ)当n?1时,a1?5a1?1,?a1??又 Qan?5an?1,an?1?5an?1?1

1 41?an?1?an?5an?1,即an?1??an

411?数列?an?成等比数列,其首项a1??,公比是q??

441?an?(?)n

414?(?)n4 ?bn?11?(?)n4(Ⅱ)由(Ⅰ)知bn?4?5

(?4)n?15525?16n?cn?b2n?b2n?1?2n??

4?142n?1?1(16n?1)(16n?4)25?16n25?16n25??n = n2nn2(16)?3?16?4)(16)16134,?c1? 333当n?1时,T1?

24111当n?2时,Tn??25?(2?3?K?n)

316161611n?1[1?()]241616??25?131?16

12469316??25???......................7分148231?16 又b1?3,b2?(Ⅲ)由(Ⅰ)知bn?4?5 n(?4)?1*一方面,已知Rn??n恒成立,取n为大于1的奇数时,设n?2k?1(k?N) 则Rn?b1?b2?K?b2k?1

1111???KK?) 41?142?143?142k?1?111111 ?4n?5?[?1?(2?3)?KK?(2k?2k?1)]

4?14?14?14?14?1 ?4n?5?(? >4n?1

??n?Rn?4n?1,即(??4)n??1对一切大于1的奇数n恒成立

???4,否则,(??4)n??1只对满足n?1的正奇数n成立,矛盾。 4??另一方面,当??4时,对一切的正整数n都有Rn?4n 事实上,对任意的正整数k,有

b2n?1?b2n?8?5(?4)2k?1?1(?4)2k?1

?5 ?8?520 ?(16)k?1(16)k?415?16k?40?8 ?8?(16k?1)(16k?4)?当n为偶数时,设n?2m(m?N*)

则Rn?(b1?b2)?(b3?b4)?K?(b2m?1?b2m) <8m?4n

当n为奇数时,设n?2m?1(m?N)

则Rn?(b1?b2)?(b3?b4)?K?(b2m?3?b2m?2)?b2m?1 <8(m?1)?4?8m?4?4n

*?对一切的正整数n,都有Rn?4n

综上所述,正实数?的最小值为4

例50 已知数集序列{1}, {3, 5}, {7, 9,11}, {13, 15, 17, 19},??,其中第n个集合有n个元素,每一个集合都由连续正奇数组成,并且每一个集合中的最大数与后一个集合最小数是连续奇数, (Ⅰ) 求第n个集合中最小数an的表达式; (Ⅱ)求第n个集合中各数之和Sn的表达式;

?1? (Ⅲ)令f(n)=?1?3?(n?N*) ,求证:2≤f(n)?3

?Sn???解: (Ⅰ) 设第n个集合中最小数an , 则第n?1个集合中最小数an?1 ,

n 又第n?1个集合中共有n?1个数, 且依次增加2 , ∴an?1?2(n?1)?an ,即 an?an?1?2(n?1)(n?2) , ∴an?1?an?2?2(n?2),an?2?an?3?2(n?3),???,a2?a1?2 ,

(n?1)(1?n?1) 相加得an?a1?2??n2?n ,即得an?n2?n?a1 .

2又a1?1 , ∴an?n2?n?1 . (Ⅱ)由(Ⅰ)得an?n2?n?1 ,

数列经典综合题

等差数列与等比数列综合题

例1 等比数列{an}的前n 项和为sn,已知S1,S3,S2成等差数列 (1)求{an}的公比q;

(2)求a1-a3=3,求sn 解:(Ⅰ)依题意有

a1?(a1?a1q)?2(a1?a1q?a1q2)

由于 a1?0,故2q?q?0

又q?0,从而q?- (Ⅱ)由已知可得a1?a(1?)?3 故a1?4

2

212121n(41?(?))81n2 从而Sn? ?(1?(?))1321?(?)2例2 在正项数列?an?中,令Sn??i?1n1.

ai?ai?1(Ⅰ)若?an?是首项为25,公差为2的等差数列,求S100; (Ⅱ)若Sn?np(p为正常数)对正整数n恒成立,求证?an?为等差数列;

a1?an?1ai?1?ai2,所以S100=1?(Ⅰ)解:由题意得,ai?ai?1(Ⅱ)证:令n?1,所以Sn?a201?a12?5

p1?,则p=1

a1?a2a1?a2?i?1nnp1=(1),

a1?an?1ai?ai?1Sn?1??i?1n?1(n?1)p1=(2),

a1?an?2ai?ai?1(n?1)n1—=,

a1?an?2a1?an?1an?1?an?2(2)—(1),得化简得(n?1)an?1?nan?2?a1(n?1)(3)

(n?2)an?2?(n?1)an?3?a1(n?1)(4),(4)—(3)得an?1?an?3?2an?2(n?1)

在(3)中令n?1,得a1?a3?2a2,从而?an?为等差数列

例3 已知{an}是公比为q的等比数列,且am,am?2,am?1成等差数列.

(1)求q的值;

(2)设数列{an}的前n项和为Sn,试判断Sm,Sm?2,Sm?1是否成等差数列?说明理由.

解:(1)依题意,得2am+2 = am+1 + am

∴2a1qm+1 = a1qm + a1qm – 1

在等比数列{an}中,a1≠0,q≠0,

∴2q2 = q +1,解得q = 1或?1. 2 (2)若q = 1, Sm + Sm+1 = ma1 + (m+1) a1=(2m+1) a1,Sm + 2 = (m+2) a1

∵a1≠0,∴2Sm+2≠S m + Sm+1

11?(?)m?221112???(?)m 若q =?,Sm + 1 =

136221?(?)2111?(?)m1?(?)m?142114112?2Sm + Sm+1 = ??[(?)m?(?)m?1]=?(?)m

1133223321?(?)1?(?)22∴2 Sm+2 = S m + Sm+1

故当q = 1时,Sm , Sm+2 , Sm+1不成等差数列; 当q =?1时,Sm , Sm+2 , Sm+1成等差数列. 2an?2an?1?n2?4n?2例4 已知数列{an}的首项a1?a(a是常数),(n?N,n?2).(Ⅰ)

?an?是否可能是等差数列.若可能,求出?an?的通项公式;若不可能,说明理由;

2(Ⅱ)设b1?b,bn?an?n(n?N,n?2),Sn为数列?bn?的前n项和,且

?Sn?是等比数列,求实数a、b满足的条件.

解:(Ⅰ)∵a1?a,依an?2an?1?n2?4n?2(n?2,3,?)

∴a2?2a?4?8?2?2a?2 a3?2a2?9?12?2?4a?5

a4?2a3?2?8a?8 a2?a1?2a?2?a?a?2,a3?a2?2a?3,a4?a3?4a?3 若{an}是等差数列,则a2 ∴{an}不可能是等差数列 (Ⅱ)∵bn2)

∴b2?a1?a3?a2,得a?1 但由a3?a2?a4?a3,得a=0,矛盾.

?an?n2 ∴bn?1?an?1?(n?1)2?2an?(n?1)2?4(n?1)?2?(n?1)2?2an?2n2?2bn(n≥

?a2?4?2a?2

当a≠-1时, bn?0{bn}从第2项起是以2为公比的等比数列

n?1∴S?b?(2a?2)(2?1)?b?(2a?2)(2n?1?1)

n12?1nb?2a?2n≥2时,Sn?(a?1)2?b?2a?2?2?

n?1n?1Sn?1(a?1)2?b?2a?2(a?1)2?b?2a?2∴{Sn}是等比数列, ∴Sn(n≥2)是常数 ∵a≠-1时, ∴b-2a-2=0 当a=-1时,

Sn?1b2?0,由bn?2bn?1(n≥3),得bn?0(n≥2) ∴Sn?b1?b2????bn?b ∵{Sn}是等比数列 ∴b≠0

综上,

a??1{Sn}是等比数列,实数a、b所满足的条件为???a??1 或??b?2a?2?b?0例5 设数列{an}的前n项和为Sn,且满足Sn=2-an,n=1,2,3,?. (Ⅰ)求数列{an}的通项公式;

(Ⅱ)若数列{bn}满足b1=1,且bn+1=bn+an,求数列{bn}的通项公式; (Ⅲ)设cn=n(3-bn),求数列{cn}的前n项和Tn.

解:(Ⅰ)∵n=1时,a1+S1=a1+a1=2 ∴a1=1

∵Sn=2-an即an+Sn=2 ∴an+1+Sn+1=2 两式相减:an+1-an+Sn+1-Sn=0 即an+1-an+an+1=0故有2an+1=an ∵an≠0 ∴

an?11?(n∈N*) an211n?1的等比数列.an=()(n∈N*) 22所以,数列{an}为首项a1=1,公比为(Ⅱ)∵bn+1=bn+an(n=1,2,3,…) ∴bn+1-bn=(得b2-b1=1

1n-1

) 21 21b4-b3=()2

2b3-b2=?? bn-bn-1=(

1n-2

)(n=2,3,?) 2将这n-1个等式相加,得

bn-b1=1+

112131?()?()???()n?2222211?()n?112??2?2()n?1

121?21n-1

)(n=1,2,3,…) 21(Ⅲ)∵cn=n(3-bn)=2n()n-1

211111∴Tn=2[()0+2()+3()2+?+(n-1)()n-2+n()n-1] ①

2222211111n?11n而 Tn=2[()+2()2+3()3+?+(n-1)()?n()] ②

222222111111①-②得:Tn?2[()0?()1?()2???()n?1]?2n()n

22222211?()n2?4n(1)n?8?8?4n(1)n Tn=41222n1?2又∵b1=1,∴bn=3-2(

=8-(8+4n)

1(n=1,2,3,…) n2例6 已知数列{an}中,a0?2,a1?3,a2?6,且对n≥3时

有an?(n?4)an?1?4nan?2?(4n?8)an?3.

(Ⅰ)设数列{bn}满足bn?an?nan?1,n?N?,证明数列{bn?1?2bn}为等比数列,并求数列

{bn}的通项公式;

(Ⅱ)记n?(n?1)???2?1?n!,求数列{nan}的前n项和Sn

(Ⅰ) 证明:由条件,得an?nan?1?4[an?1?(n?1)an?2]?4[an?2?(n?2)an?3],

则an?1?(n?1)an?4[an?nan?1]?4[an?1?(n?1)an?2].

即bn?1?4bn?4bn?1.又b1?1,b2?0,所以bn?1?2bn?2(bn?2bn?1),b2?2b1??2?0. 所以{bn?1?2bn}是首项为?2,公比为2的等比数列. b2?2b1??2,所以bn?1?2bn?2n?1(b2?2b1)??2n.

两边同除以2n?1,可得

bn?1bn1. ???2n?12n211?b?于是?n为以首项,-为公差的等差数列. ?n222??所以

bnb11??(n?1),得bn?2n(1?n). n2222(Ⅱ)an?2n?nan?1?n2n?1?n(an?1?2n?1),令cn?an?2n,则cn?ncn?1.

而c1?1, ?cn?n(n?1)???2?1?c1?n(n?1)???2?1. ∴an?n(n?1)???2?1?2n.

nan?n?n?(n?1)???2?1?n2n?(n?1)!?n!?n?2n,

∴Sn?(2!?1!)?(3!?2!)???(n?1)!?n!?(1?2?2?22???n?2n). 令Tn=1?2?2?22???n?2n,

则2Tn=1?22?2?23???(n?1)?2n?n?2n?1. ②

①-②,得?Tn=2?22???2n?n?2n?1,Tn=(n?1)2n?1?2.

∴Sn?(n?1)!?(n?1)2n?1?1.

?an?1?2an?3bn,例7 设数列?an?,?bn?满足a1?1,b1?0且??bn?1?an?2bn,(Ⅰ)求?的值,使得数列?an??bn?为等比数列; (Ⅱ)求数列?an?和?bn?的通项公式;

n?1,2,3,??

?,求极限lim(Ⅲ)令数列?an?和?bn?的前n项和分别为Sn和SnSn的值.

n??S?n(Ⅰ)令cn?an??bn,其中?为常数,若?cn?为等比数列,则存在q?0使得

cn?1?an?1??bn?1?q(an??bn).

又an?1??bn?1?2an?3bn??(an?2bn)?(2??)an?(3?2?)bn. 所以q(an??bn)?(2??)an?(3?2?)bn. 由此得(2???q)an?(3?2???q)bn?0,n?1,2,3,?

由a1?1,b1?0及已知递推式可求得a2?2,b2?1,把它们代入上式后得方程组

?2???q?0, 消去q解得???3. ?3?2???q?0?下面验证当??3时,数列an?3bn为等比数列.

??an?1?3bn?1?(2?3)an?(3?23)bn?(2?3)(an?3bn) (n?1,2,?3,, a1?3b1?1?0,从而an?3bn是公比为2?3的等比数列.

同理可知an?3bn是公比为2?3的等比数列,于是???3为所求. (Ⅱ)由(Ⅰ)的结果得an?3bn?(2?3)n?1????,an?3bn?(2?3)n?1,解得

1an??2?3?2???n?1?2?3??n?1?,b?3?2?3n??6????n?1?2?3??n?1?.

??

(Ⅲ)令数列?dn?的通项公式为dn?(2?3)前n项和为Pn;

令数列?en?的通项公式为en?(2?3)n?1n?1,它是公比为p?2?3的等比数列,令其

,它是公比为p??2?3的等比数列,令其

1?11?111???n?1????. 2?1?22?1?21?26(Ⅲ)(ⅰ)当a?2时,由(Ⅱ)知:Tn?∴Tn?m?11,即条件①满足;又0?m?, 661?11?3?3?n?1??m?2??1?n?log?1??1?0. 2???n?12?1?22?1?1?6m?1?6m??3??1?的最大整数,则当n≥n0时,Tn?m.?9′ 取n0等于不超过log2??1?6m?an?a?aaaa(ⅱ)当a?2时,∵n≥1,n???≥,∴an≥?2n,∴bn?an≥bn??2n??bn?2n.

22222?2?na1?11??1i?an∴Tn???bia?≥??bi?2i?1?????n?1?.

22?1?22?1??2i?1i?1?21?11?1?n?1由(ⅰ)知存在n0?N?,当n≥n0时,?, ??2?1?22?1?3a故存在n0?N?,当n≥n0时,Tn?na1?11?a11???n?1?,不满足条件. ???22?1?22?1?23a6nan?a?aaaa(ⅲ)当0?a?2时,∵n≥1,n???≤,∴an≤?2n,∴bn?an≤bn??2n??bn?2n.

22222?2?n1aa1?11?i∴Tn???bia?≤??bi2i?1?????n?1?.

22?1?22?1?i?12i?12n取m?a?1?a1?11??0,?,若存在n0?N?,当n≥n0时,Tn?m,则???n?112?6?22?1?221??a??. 12?∴

111?n?1?矛盾. 故不存在n0?N?,当n≥n0时,Tn?m.不满足条件. 1?22?13综上所述:只有a?2时满足条件,故a?2. 例43 已知数列?an?满足a1?(1)求a2,a3,a4;

?n?1??2an?n?n?N?.1,an?1? ??2an?4n?an??n?(2)已知存在实数?,使??为公差为?1的等差数列,求?的值;

a?n?n?(3)记bn?13n?22?n?N?,数列?b?的前n项和为S?nn,求证:Sn??an?223?1. 12

解:(1)?a1?1,由数列?an?的递推公式得 238a2?0,a3??,a4??

45(2)?an?1??(n?1)an??n?an?1?n?1an?n

(n?1)(2an?n)??(n?1)an?4na??n= ?n(n?1)(2an?n)an?n?n?1an?4n=

(??2)an?(4??1)nan??n??1= ?33an?3nan?n?a??n???1为公差是的等差数列. ?数列?n?3?an?n?由题意,令

??13??1,得???2

(3)由(2)知

an??na1?2??(n?1)(?1)??n,

an?na1?1?n2?2n所以an?

n?1此时bn??n?31= n?22n?2?(n?1)?2(n?2)(3)n(n?2)32?n?3=[111?], n?2n2(3)(n?2)(3)n11111?????Sn?[422(3)3?33(3)?4(3)?2

?11?????53(3)?5(3)?3

11111[???] =n?2n236 (3)?(n?2)(3)?n?11?]

(3)n?1?(n?1)(3)n?2?(n?2)>

11123?1(??)?? 26123

例44 已知数列{an},a1?a2?2,an?1?an?2an?1(n?2)

(Ⅰ)求数列{an}的通项公式an (Ⅱ)当n?2时,求证:

111??...??3 a1a2an2*(Ⅲ)若函数f(x)满足:f(1)?a1,f(n?1)?f(n)?f(n).(n?N)

求证:

?k?1n11?.

f(k)?12解: (1) ?an?1?an?2an?1,两边加an得: an?1?an?2(an?an?1)(n?2),

?{an?1?an} 是以

……①

2为公比,

a1?a2?4为首项的等比数列.

?an?1?an?4?2n?1?2?2n由an?1?an?2an?1两边减2an得: an?1?2an??(an?2an?1)(n?2) ?{an?1?2an} 是以

?1

为公比, a2?2a1??2为首项的等比数列.

?an?1?2an??2?(?1)n?1?2?(?1)n

nn①-②得: 3an?2[2?(?1)] 所以,所求通项为an?2n[2?(?1)n]…………5分 3(2) 当n为偶数时,

1131132n?1?2n???[?]??an?1an22n?1?12n?122n?1?2n?2n?2n?1?132?232?2311??n?1n???(?)(n?2)n?1n?1nn?1n22?2?2?122?2222n?1nn?1n

11?n111311131???...??(1??2?...?n)??2?3?3?n?3 a1a2an222221?122当n为奇数时,?an?12n?0,又n?1为偶数 [2?(?1)n]?0,?an?1?0,an?13?由(1)知,

1111111??...????...???3 a1a2ana1a2anan?12(3)证明:?f(n?1)?f(n)?f(n)?0

?f(n?1)?f(n),?f(n?1)?f(n)?f(n?1)?????f(1)?2?0

11111 ?2???f(n?1)f(n)?f(n)f(n)[f(n)?1]f(n)f(n)?1111 ??f(n)?1f(n)f(n?1)n???k?11111111?[?]?[?]?????[?]f(k)?1f(1)f(2)f(2)f(3)f(n)f(n?1)1111????.f(1)f(n?1)f(1)2

?x?0?例45 设不等式组?y?0所表示的平面区域为Dn,记Dn内的格点(格点即横坐标和

?y??nx?3n?纵坐标均为整数的点)的个数为f(n)(n∈N*). (1)求f(1)、f(2)的值及f(n)的表达式;

(2)设bn=2nf(n),Sn为{bn}的前n项和,求Sn; (3)记Tn?范围.

解:(1)f(1)=3, f(2)=6

当x=1时,y=2n,可取格点2n个;当x=2时,y=n,可取格点n个 ∴f(n)=3n

(2)由题意知:bn=3n·2n

Sn=3·21+6·22+9·23+?+3(n-1)·2n1+3n·2n

f(n)f(n?1),若对于一切正整数n,总有Tn≤m成立,求实数m的取值n2 ∴2Sn=3·22+6·23+?+3(n-1)·2n+3n·2n+1

∴-Sn=3·21+3·22+3·23+?3·2n-3n·2n+1 =3(2+22+?+2n)-3n·2n+1

2?2n?1?3n2n?1 =3·

1?2 =3(2n+1-2)-3nn+1 ∴-Sn=(3-3n)2n+1-6 Sn=6+(3n-3)2n+1

(3)Tn?f(n)f(n?1)3n(3n?3) ?nn22(3n?3)(3n?6)n?1Tn?1n?22???3n(3n?3)Tn2n2nn?2?1 当n?1时, 2nn?2当n?2时,?12nn?2当n?3时,?12n ∴T1T4>?>Tn 故Tn的最大值是T2=T3= ∴m≥

27 227。 2例46 (2009陕西卷理) 已知数列?xn}满足, x1=11xn+1=,n?N*. 2’1?xn???猜想数列{xn}的单调性,并证明你的结论;

(Ⅱ)证明:|xn?1-xn|≤()证明(1)由x1?1265n?1。

112513及xn+1?得x2??x4?,x4? 21?xn3821由x2?x4?x6猜想:数列?x2n?是递减数列 下面用数学归纳法证明:

(1)当n=1时,已证命题成立 (2)假设当n=k时命题成立,即x2k?x2k?2 易知x2k?0,那么x2k?2?x2k?4?x2k?3?x2k?111??

1?x2k?11?x2k?3(1?x2k?1)(1?x2k?3)=

x2k?x2k?2?0

(1?x2k)(1?x2k?1)(1?x2k?2)(1?x2k?3)即x2(k?1)?x2(k?1)?2

也就是说,当n=k+1时命题也成立,结合(1)和(2)知,命题成立 (2)当n=1时,xn?1?xn?x2?x1?1,结论成立 6

11111111??(?)?(?)???(?) a1ana1a2a2a3an?1an311111111 而a1?, ?(?)?(?)???(?) ??42n?12334nn?1?151n?2n?1 ?an? ㈡ ???an6n?1n?1n?2 由㈠㈡知,命题成立.

例32 设数列{an}的前n项和为Sn,a1?1,an?Sn?2(n?1)。 n(1)求证:数列{an}为等差数列,并分别求出an、Sn的表达式;

111}的前n项和为Tn,求证:?Tn?;

anan?154SSS(3)是否存在自然数n,使得S1?2?3???n?(n?1)2?2009?若存在,求出n

23n(2)设数列{的值;若不存在,请说明理由。

又易知Tn单调递增,故Tn?T1?(3)由Sn?nan?2n(n?1)得

111,得?Tn? 554Sn?2n?1 nSS2S3????n?(n?1)2?1?3?5???(2n?1)?(n?1)2 23n=2n?1??13分

由2n?1?2009,得n=1005,即存在满足条件的自然数n=1005. S1?

22Sn1例33 已知数列?an?中,a1?,当n?2时,其前n项和Sn满足an?,

2Sn?13(1) 求Sn的表达式及liman的值;

n??S2n(2) 求数列?an?的通项公式; (3) 设bn?1(2n?1)3?1(2n?1)3,求证:当n?N且n?2时,an?bn。

22Sn11?Sn?1?Sn?2SnSn?1???2(n?2) 解:(1)an?Sn?Sn?1?2Sn?1SnSn?1所以??1?1是等差数列。则。 S??n2n?1?Sn?liman22?lim???2。

n??S2n??2S?12limS?1nnnn??(2)当n?2时,an?Sn?Sn?1?11?2, ??22n?12n?14n?1?1?n?1???3综上,an??。

2?n?2?2???1?4n(3)令a?111,当n?2时,有0?b?a? ,b?32n?12n?11?2n?11?1?2n?11。

等价于求证

?2n?1?3?2n?1?3当n?2时,0?111?,令f?x??x2?x3,0?x?, 2n?133f??x??2x?3x2?2x(1?则f?x?在(0,3313x)?2x(1??)?2x(1?)?0, 22231]递增。 3又0?111, ??2n?12n?1311)?g(),即an?bn

332n?12n?1所以g(

例34 已知数列?an?各项均不为0,其前n项和为Sn,且对任意n?N*都有(1?p)Sn?p?pan2n1?C1na1?Cna2???Cnan(p为大于1的常数),记f(n)?.

2nSn(1) 求an;

(2) 试比较f(n?1)与

p?1f(n)的大小(n?N*); 2p2n?1p?1??p?1??*?1?? ??,(n?N).p?1?2p?????(3) 求证:(2n?1)f(n)剟f(1)?f(2)???f(2n?1)解:(1) ∵(1?p)Sn?p?pan,

②-①,得

(1?p)an?1??pan?1?pan,

① ②

∴(1?p)Sn?1?p?pan?1.

即an?1?pan.

在①中令n?1,可得a1?p.

∴?an?是首项为a1?p,公比为p的等比数列,an?pn. (2) 由(1)可得

p(1?pn)p(pn?1). Sn??1?pp?12n122nnnn1?C1na1?Cna2???Cnan?1?pCn?pCn???Cnp?(1?p)?(p?1). 2n1?C1p?1(p?1)nna1?Cna2???Cnan??∴f(n)?,

p2n(pn?1)2nSn

p?1(p?1)n?1f(n?1)??.

p2n?1(pn?1?1)p?1p?1(p?1)n?1f(n)??而,且p?1,

p2n?1(pn?1?p)2p∴pn?1?1?pn?1?p?0,p?1?0. p?1f(n),(n?N*). ∴f(n?1)?2p

2?6an?6(n?N?). 例35 数列?an?:满足a1?2,an?1?an(Ⅰ) 设Cn?log5(an?3),求证?Cn?是等比数列; (Ⅱ) 求数列?an?的通项公式; (Ⅲ)设bn?解:(Ⅰ)由

1151?2,数列?bn?的前n项和为Tn,求证: ??Tn??. an?6an?6an16422an?1?an?6an?6,得an?1?3?(an?3).

?log5(an?1?3)?2log5(an?3),即 Cn?1?2Cn,

??Cn?是以2为公比的等比数列

(Ⅱ) 又C1?log55?1

?Cn?2n?1即 log5(an?3)?2n?1,

?an?3?5(Ⅲ)?bn?2n?1. 故an?52?3.

n?111111111?2??,?Tn?????2n. an?6an?6anan?6an?1?6a1?6an?1?645?9又0?152?9n?1151?,???T??.n164 52?9162例36 给定正整数n和正数b,对于满足条件a1?an?1?b的所有无穷等差数列?an?,试求

y?an?1?an?2???a2n?1的最大值,并求出y取最大值时?an?的首项和公差.

解:设?an?公差为d,则an?1?a1?nd,nd?an?1?a1.

y?an?1?an?2???a2n?1?an?1?(an?1?d)???(an?1?nd) ?(n?1)an?1?(1?2???n)d?(n?1)an?1?n(n?1)d 2a?a1nd)?(n?1)(an?1?n?1) 22?(n?1)(an?1??n?1(3an?1?a1). 222又a1?an?1?b,??a1??b?an?1.

∴3an?1?a1??an?1?3an?1?b??(an?1?)?232239?4b9?4b,当且仅当an?1??244时,等号成立.

n?1(n?1)(9?4b). (3an?1?a1)?2894b?3(n?1)(9?4b)当数列?an?首项a1?b?,公差d??时,y?,

44n8(n?1)(9?4b)∴y的最大值为.

8∴y?

例37 已知数列{an}满足a1=5,a2=5,an+1=an+6an-1(n≥2,n∈N*),若数列{an?1??an}是

等比数列.

(Ⅰ)求数列{an}的通项公式;

(Ⅱ)求证:当k为奇数时,1?1?4;

akak?13k?1 (Ⅲ)求证:1?1???1?1(n?N*). a1a2an2

得?=2或?=-3

当?=2时,可得{an?1?2an}为首项是 a2?2a1?15,公比为3的等比数列, 则an?1?2an?15?3n?1 ①

当?=-3时,{an?1?3an}为首项是a2?3a1??10,公比为-2的等比数列, ∴an?1?3an??10(?2)nn?1 ②

n①-②得, an?3?(?2).

(注:也可由①利用待定系数或同除2n+1得通项公式) (Ⅱ)当k为奇数时,

114114??k?1?k?? kk?1k?1k?1akak?133?23?233kk4?[8?7?()]?7?6k?8?4k2?k?1?k?1k?0 kkk?1k?1kk?13?(3?2)(3?2)3(3?2)(3?2k?1)∴

114??k?1 akak?13(Ⅲ)由(Ⅱ)知k为奇数时,

11411??k?1?k?k?1 akak?1333①当n为偶数时,

111111111??????2???n?(1?n)? a1a2an332233

②当n为奇数时,

1111111 ??????????a1a2ana1a2anan?1=

111111?2???n?1?(1?n?1)? 332233例 38 如图,把正?ABC分成有限个全等的小正三角形,且在每个小三角形的顶点上都放置一个非零实数,使得任意两个相邻的小三角形组成的菱形的两组相对顶点上实数的乘积相

?,第i行中第j个数为等.设点A为第一行,...,BC为第n行,记点A上的数为a11,aij(1?j?i).若a11?1,a21?(1)求a31、a32、a33;

(2)试求第n行中第m个数anm的表达式(用n、m表示);

(3)记Sn?an1?an2???anm(n?N*),求证:

11,a22?. 241114n?1n??????(n?N*)

S1S2Sn3.解:(1)a31?(2)anm111 ,a32?,a33?4816n?m?2?1?????2?

(3)Sn?12n?2?122n?2

当n?2时,Sn?当n?2时,

12n?2?122n?2?12n?2?1,所以

1111????n ?1,则?S1S2SnSn1?又Sn112n?2?122n?24n?1?n?4n?1 2?11114n?1?????所以 S1S2Sn3an?11?1?.数列{bn}例39 已知a?0,且a?1,数列{an}的前n项和为Sn,它满足条件Snalgan. 中,bn?an·

(1)求数列{bn}的前n项和Tn;

(2)若对一切n?N都有bn?bn?1,求a的取值范围.

*an?11a(an?1)?1? ,∴Sn?解:(1)? Snaa?1a(a1?1)?a. 当n?1时,a1?S1?a?1a(an?1)a(an?1?1)n*当n≥2时,an?Sn?Sn?1=??an,∴ an?a(n?N)

a?1a?1lga=n·alga, lgan?an·此时bn?an·

23∴Tn?b1?b2?……bn=lga(a?2a?3a?……+na).

nnn设un?a?2a?3a?……+na, ∴(1?a)un?a?a?a?……a?na2323nnn?1a(an?1)??nan?1,

a?1nan?1a(an?1)?. ∴un?a?1(a?1)2nan?1a(an?1)[?]. ……6分 ∴Tn?lga·2a?1(a?1)(2)由bn?bn?1?nalga?(n?1)ann?1lga可得

①当a?1时,由lga?0,可得a?n n?1nn*对一切n?N都成立, ??1(n?N*),a?1, ∴a?n?1n?1∴此时的解为a?1.

②当0?a?1时,由lga?0 可得n?(n?1)a,a?n, n?1?n1n**≥(n?N),0?a?1,∴0?a?对一切n?N都成立, n?12n?11∴此时的解为0?a?.

2由①,②可知

对一切n?N,都有bn?bn?1的a的取值范围是0?a?*1或a?1. 2例40 已知正项数列?an?中,a1?6,点Anan,an?1在抛物线y2?x?1上;数列?bn?中,点

??Bn?n,bn?在过点?0,1?,以方向向量为?1,2?的直线上。

(Ⅰ)求数列?an?,?bn?的通项公式;

??an, ?n为奇数?(Ⅱ)若f?n???,问是否存在k?N,使f?k?27??4f?k?成立,若b, n为偶数????n存在,求出k值;若不存在,说明理由;

(Ⅲ)对任意正整数n,不等式

an?1?1??1??1??1???1????1???b1??b2??bn??ann?2?an?0成立,求正数

a的取值范围。

解:(Ⅰ)将点Anan,an?1代入y2?x?1中得

??an?1?an?1 ? an?1?an?d?1? an?a1??n?1??1?n?5直线l:y?2x?1, ? bn?2n?1??n?5, ?n为奇数?(Ⅱ)f?n??? ??2n?1, ?n为偶数?

当k为偶数时,k?27为奇数, ? f?k?27??4f?k?? k?27?5?4?2k?1?, ? k?4当k为奇数时,k?27为偶数,? 2?k?27??1?4?k?5?, ? k?综上,存在唯一的k?4符合条件。(

35?舍去?2an?1?1??1??1?1?1??1????????b1??b2??bn??ann?2?an?0即a??1??1??1?1?1??1???????2n?3?b1??b2??bn?1?1??1??1?1?1??1???????2n?3?b1??b2??bn?1?1??1??1??1???1???1????1???1?2n?5?b1??b2??bn??bn?1?12n?3?1?2n?32n?4??1?????2n?5?bn?1?2n?52n?3?12n?42n?5?2n?3 记f?n??? f?n?1??? ?f?n?1?f?n?2?4n2?16n?164n?16n?15? f?n?1??f?n?, 即f?n?递增,? f?n?min?f?1??? 0?a?45151445?,3155?例41 已知等比数列?an?的前n项和为Sn?2?3n?k(k?R,n?N?) (Ⅰ)求数列?an?的通项公式;

(Ⅱ)设数列?bn?满足an?4(5?k)anbn,Tn为数列?bn? 的前n项和,试比较3?16Tn 与 4(n?1)bn?1的大小,并证明你的结论.

解:(Ⅰ)由Sn?2?3n?k(k?R,n?N?)得:n?2时,

an?Sn?Sn?1?4?3n?1

??an?是等比数列,?a1?S1?6?k?4?k??2,得 an?4?3n?1(n?N?)

(Ⅱ)由an?4(5?k)anbn和an?4?3n?1得bn?n?1

4?3n?1?Tn?b1?b2?b3??bn?1?bn?12n?2n?1??????(1)2n?2n?14?34?34?34?3

123n?2n?13Tn??????????(2)2n?3n?244?34?34?34?311111n?1 ???????44?34?324?3n?34?3n?24?3n?111111n?132n?1??10分 ?Tn??????????2n?3n?2n?1n?188?38?38?38?38?31616?3n(n?1)2n?1n(n?1)?3(2n?1) 4(n?1)bn?1?(3?16Tn)??n?1?3n33n?(2)?(1):2Tn??n(n?1)?3(2n?1)?n2?5n?3

?当n?5?375?37?0时有n(n?1)?3(2n?1),所以当n?5(n?N?)时有或n?223?16Tn?4(n?1)bn?1

那么同理可得:当

5?375?37?n?时有n(n?1)?223(n?2,所以当

?)3?16Tn?4(n?1)bn?1 时有1?n?5(n?N6综上:当n?5(n?N)时有3?1Tn?3?1T6n?

??n4?(bn?1;当1?n?5(n?N)时有1)n4?(bn?11 )例42 已知数列?an?中,a1?3,a2?5,其前n项和Sn满足

Sn?Sn?2?2Sn?1?2n?1?n≥3?.令bn?1.an?an?1

(Ⅰ)求数列?an?的通项公式;

(Ⅱ)若f?x??2x?1,求证:Tn?b1f?1??b2f?2????bnf?n??(n≥1); (Ⅲ)令Tn?1b1a?b2a2?b3a3???bnan?(a?0),求同时满足下列两个条件的所?21?1?;②对于任意的m??0,?,均存在6?6?16有a的值:①对于任意正整数n,都有Tn?n0?N?,使得n≥n0时,Tn?m.

解:(Ⅰ)由题意知Sn?Sn?1?Sn?1?Sn?2?2n?1?n≥3?即an?an?1?2n?1?n≥3? ∴an??an?an?1???an?1?an?2?????a3?a2??a2

?2n?1?2n?2???22?5?2n?1?2n?2???22?2?1?2?2n?1?n≥3?

检验知n?1、2时,结论也成立,故an?2n?1.

n?1n2?1?2?1?1?1???111?n?1bfn??2????(Ⅱ)由于n????

2?2n?1??2n?1?1?2?2n?12n?1?1??2n?1??2n?1?1?故

Tn?b1f?1??b2f?2????bnf?n??

1??11??11?1???1??????????n??2?23?n?12??2?12?1????1?21?2??1?21?2?


2024数列经典综合题.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:高速公路机电工程施工组织设计

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219