北京西城区2024年中考二模数学试题及答案doc-2024年北京

2025-04-27

2014年北京市西城区初三二模

数 学 试 卷 2014. 6

学校 姓名 准考证号 考生须知 1.本试卷共6页,共五道大题,25道小题,满分120分。考试时间120分钟。 2.在试卷和答题卡上准确填写学校名称、姓名和准考证号。 3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效。 4.在答题卡上,选择题、作图题用2B铅笔作答,其他试题用黑色字迹签字笔作答。 5.考试结束,将本试卷、答题卡和草稿纸一并交回。 一、选择题(本题共32分,每小题4分)

下面各题均有四个选项,其中只有一个是符合题意的.

1,0,?1,?2这四个数中,最小的数是 21 A. B.0 C.?1

21.在

元, 将93 210用科学记数法表示为

D.?2

2.据报道,按常住人口计算,2013年北京市人均GDP(地区生产总值)达到约93 210

A.93.21?10 B.9.321?10 C.0.9321?10 D. 932.1?10 3.如图,四边形ABCD为⊙O的内接四边形, 若∠BCD=110°,则∠BAD的度数为 A.140° B.110° C.90° D.70°

3452CBODA

4.在一个不透明的口袋中装有5张完全相同的卡片,卡片上面分别写有数字-2,-1,0, 1,3,从中随机抽出一张卡片,卡片上面的数字是负数的概率为

4 3 2 1 A. B. C. D. 55555.如图,为估算学校的旗杆的高度,身高1.6米的小红旗杆在地面的影子AB由A向B走去,当她走到点C处

同学沿着时,她的

影子的顶端正好与旗杆的影子的顶端重合,此时测得AC=2m,BC=8m,则旗杆的高度是( ) A.6.4m B.7m C. 8m D.9 6.如图,菱形ABCD的周长是20,对角线AC,BD相交于若BD=6,则菱形ABCD的面积是 A. 6 B. 12 C. 24 D.48

yBAC点O,

OD7.如图,在平面直角坐标系xOy中,直线y?3x经过点A,⊥x轴于点B,将△ABO绕点B顺时针旋转60o得到△BCD,标为(2,0),则点C的坐标为 A. (5,3) B. (5,1)

OBxADC作AB若点B的坐

C. (6,3) D.(6,1)

8.右图表示一个正方体的展开图,下面四个正方体中只有一求,那么这个正方体是

A. B. C. D. 二、填空题(本题共16分,每小题4分) 9.函数y=个符合要

x-1中,自变量x的取值范围是_________

10.若一次函数的图像过点(0,2),且函数y随自变量x的增大而增大,请写出一个符合要求的一次函数表达式:_________

11.一组数据:3,2,1,2,2的中位数是_____,方差是12.如图,在平面直角坐标系xOy中,已知抛物线y=?x(x?3)

BD_____. (0≤x≤3)在x

ACE

轴上方的部分,记作C1,它与x轴交于点O,A1,将旋转180°得C2,C2与x 轴交于另一点A2.请继续操将C2绕点A2旋转180°得C3,与x 轴交于另一点A3;A 2旋转180°得C4,与x 轴交于另一点A4,这样依次

C1绕点A1作并探究:将C3绕点得到x轴上

的点A1,A2,A3,?,An,?,及抛物线C1,C2,?,Cn,?.则点A4的坐标为 ;Cn的顶点坐标为 (n为正整数,用含n的代数式表示) . 三、解答题(本题共30分,每小题5分) 13.计算: ()?1??3?(??3)0?3tan30?

14.已知:如图,C是AE上一点,∠B=∠DAE,BC∥DE,AC=DE. 求证:AB=DA. 15.解分式方程:

142x??1 2x?4x?2

16.列方程或方程组解应用题:

一列“和谐号”动车组,有一等车厢和二等车厢共6节,一共设有座位496个.其中每节一等车厢设有座位64个,每节二等车厢设有座位92个.问该列车一等车厢和二等车厢各有多少节?

17.已知关于x的一元二次方程x2+2x+3k-6=0有两个不相等的实数根 (1)求实数k的取值范围;

(2)若k为正整数,且该方程的根都是整数,求k的值.

18.抛物线y?x2?bx?c(b,c均为常数)与x轴交于A(1,0),B两点,与y轴交于点C(0,3).. (1)求该抛物线对应的函数表达式;

(2)若P是抛物线上一点,且点P到抛物线的对称轴的距离为3,请直接写出点P的坐标.

四、解答题(本题共20分,每小题5分)

19.如图,在四边形ABCD中,AB∥DC, DB平分∠ADC, E是CD的延长线上一点,且?AEC??ADC.

[来源学。科。网]

12(1)求证:四边形ABDE是平行四边形.

(2)若DB⊥CB,∠BCD=60°,CD=12,作AH⊥BD于H, 求四边形AEDH的周长.

E

ABCD21.据报道:2013年底我国微信用户规模已到达6亿.以下是根据相关数据制作的统计图表的一部分:

请根据以上信

息,回答以下问题:

(1)从2012年到2013年微信的人均使用时长增加了________分钟;

(2)补全2013年微信用户对“微信公众平台”参与关注度扇形统计图,在我国6亿微信用户中,经常使用户约为_________亿(结果精确到0.1);

(3)从调查数学看,预计我国微信用户今后每年将以20%的增长率递增,请你估计两年后,我国微信用户的规模将到达_________亿. 21.如图,AB为⊙O的直径,弦CD⊥AB于点H,过点B作⊙O的切线与AD的延长线交于F. A(1)求证:?ABC??F (2)若sinC=.

22.阅读下面材料:

3,DF=6,求⊙O的半径. 5COHBDF

小明遇到这样一个问题: 如图1,五个正方形的边长都为1,将这五个正方形分割为四部分,再拼接为一个大正方形.

小明研究发现:如图2,拼接的大正方形的边长为5, “日”字形的对角线长都为5,五个正方形被两条互相垂直的线段AB,CD分割为四部分,将这四部分图形分别标号,以CD为一边画大正方形,把这四部分图形分别移入正方形内,就解决问题.

请你参考小明的画法,完成下列问题:

(1)如图3,边长分别为a,b的两个正方形被两条互相垂直的线段AB,CD分割为四部分图形,现将这四部分图形拼接成一个大正方形,请画出拼接示意图

(2)如图4,一个八角形纸板有个个角都是直角,所有的边都相等,将这个纸板沿虚线分割为八部分,再拼接成一个正方形,如图5所示,画出拼接示意图;若拼接后的正方形的面积为8?42,则八角形纸板的边长为 .

五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.经过点(1,1)的直线l:

y?kx?2 (k?0)与反比例函数G1:y1?m (m?0)的图象交于点A(?1,a),B(b,-1),与y轴交于点D. x(1)求直线l对应的函数表达式及反比例函数G1的表达式; (2)反比例函数G2::y2?t (t?0), x①若点E在第一象限内,且在反比例函数G2的图象上,若EA=EB,且△AEB的面积为8,求点E的坐标及t值;

②反比例函数G2的图象与直线l有两个公共点M,N(点M在点N的左侧), 若DM?DN?32,直接写出t的取值范围.

24.在△ABC,∠BAC为锐角,AB>AC, AD平分∠BAC交BC于点D.

(1)如图1,若△ABC是等腰直角三角形,直接写出线段AC,CD,AB之间的数量关系; (2)BC的垂直平分线交AD延长线于点E,交BC于点F.

①如图2,若∠ABE=60°,判断AC,CE,AB之间有怎样的数量关系并加以证明;

②如图3,若AC?AB?3AE,求∠BAC的度数.

[来源学+科+网Z+X+X+K]

[来源学科网ZXXK]

25.在平面直角坐标系xOy中,对于⊙A上一点B及⊙A外一点P,给出如下定义:若直线PB与 x轴有公共点(记作M),则称直线PB为⊙A的“x关联直线”,记作lPBM. (1)已知⊙O是以原点为圆心,1为半径的圆,点P(0,2),

①直线l1:y?2,直线l2:y?x?2,直线l3:y?3x?2,直线l4:y??2x?2都经过点P,在直线l1, l2, l3, l4中,是⊙O的“x关联直线”的是 ;

②若直线lPBM是⊙O的“x关联直线”,则点M的横坐标xM的最大值是 ; (2)点A(2,0),⊙A的半径为1,

①若P(-1,2),⊙A的“x关联直线”lPBM:y?kx?k?2,点M的横坐标为xM,当xM最大时,求k的值;

②若P是y轴上一个动点,且点P的纵坐标yp?2,⊙A的两条“x关联直线”lPCM,lPDN是⊙A的两条切线,切点分别为C,D,作直线CD与x轴点于点E,当点P的位置发生变化时, AE的长度是否发生改变?并说明理由.

北京市西城区2014年初三二模试卷

数学试卷参考答案及评分标准 2014.6

一、选择题(本题共32分,每小题4分)

题号 答案 1 D 2 B 3 D 4 C 5 C 6 C 7 A 8 B 二、填空题(本题共16分,每小题4分)

9 10 答案不唯一, 如:y?x?2 2 11 0.4 (12,0) 12 (3n?39,(?1)n?1?) 24x?1 [来源学科网](n为正整数) 三、解答题(本题共30分,每小题5分) 13.解: ()?1??3?(??3)0?3tan30?

14=4?3?1?3?3 ···································································· 4分 3=3?23. ········································································· 5分

14. 证明:(1)∵BC∥DE,

∴∠ACB=∠DEA. …………1分 在△ABC和△DAE中,

BD??B??DAE,? ??ACB=?DEA ?AC?DE,?ACE∴△ABC≌△DAE. ·············································· 4分

∴AB=DA. ··························································· 5分

15.方程两边同时乘以x2?4,得2?x(x?2)?x2?4, ································· 3分 解得,x??3. ················································································· 4分 经检验,x??3是原方程的解x??3 ······················································· 5分

16.解:设该列车一等车厢有x节,二等车厢有y节.········································ 1分

?x?y?6,由题意,得 ? ························································ 2分

64x?92y?496,?解得 ??x?2, ················································································· 4分

?y?4,答:该列车一等车厢有2节,二等车厢有4节 ·············································· 5分 ?? .

17.解:(1)由题意,得 Δ=4-4(3k-6)>0 

∴k?7. ················································································ 2分 3(2)∵k为正整数,

∴k=1,2  ·············································································· 3分 当k=1时,方程x2+2x-3=0的根x1=-3,x2=1都是整数; ······················ 4分 当k=2时,方程x2+2x=0的根x1=-2,x2=0都是整数. 综上所述,k=1,2.······································································ 5分

18.解:(1) ∵抛物线y?x2?bx?c与y轴交于点C(0,3),

∴c=3 . ∴y?x2?bx?3.

又∵抛物线y?x2?bx?c与x轴交于点A(1,0), ∴b=-4 .

∴y?x2?4x?3. ······································································· 3分

(2)点P的坐标为(5,8)或(?1,8). 四、解答题(本题共20分,每小题5分) 19.解:(1)∵DB平分∠ADC,

121 又∵?AEC??ADC,

2∴?AEC??1.

∴?1??2??ADC.

∴AE∥BD . ······································································ 1分 又∵AB∥EC,

∴四边形AEDB是平行四边形. ··········································· 2分 (2)∵DB平分∠ADC,,∠ADC=60°,AB∥EC,

∴∠1=∠2=∠3=30°. ∴AD =AB. 又∵DB ⊥BC, ∴∠DBC=90°.

在Rt△BDC中, CD=12,

∴BC=6,DB?63. ·························································· 3分 在等腰△ADB中,AH ⊥BD, ∴DH= BH=DB?33. 在Rt△ABH中,∠AHB=90°,

∴AH=3,AB=6. ·································································· 4分 ∵四边形AEDB是平行四边形. ∴AE?BD?63, ED=AB=6.

∴AE?ED?DH?AH?93?9. ········································ 5分

12

∴四边形AEDH的周长为93?9.

20.解:(1)6.7; ··················································································· 1分

(2)42.4%, 1.5·········································································· 4分 (3)8.64 ···················································································· 5分

21.(1)证明:∵BF为⊙O的切线,

∴AB⊥BF于点B. ∵ CD⊥AB,

∴∠ABF =∠AHD =90°. ∴CD∥BF. ∴∠ADC=∠F. 又∵∠ABC=∠ADC,

∴∠ABC=∠F. ·································································· 2分

(2)解:连接BD.

∵AB为⊙O的直径, ∴∠ADB =90°,

由(1)∠ABF =90°, ∴∠A=∠DBF. 又∵∠A=∠C.

∴∠C=∠DBF. ····································································· 3分 在Rt△DBF中,sinC?sin?DBF?ACOHBDF3,DF=6, 5∴BD=8. ················································································· 4分 在Rt△ABD中,sinC?sinA?3, 5

∴AB?40. 320. ································································· 5分 3∴⊙O的半径为

22.解:(1)拼接示意图如下;……………… 2分

(2)接示意图如下,八角形纸板的边长为 1 . ······························· 5分

五、解答题(本题共22分,第23题7分,第24题7分,第25题8分) 23.(1)解:∵直线l:y?kx?2 (k?0)经过(?1,1),

∴k??1,

∴直线l对应的函数表达式y??x?2. ···································· 1分 ∵直线l与反比例函数G1:y1?∴a?b?3.

∴A(?1,3),B(3,-1).

∴m??3.

∴反比例函数G1函数表达式为y??m (m?0)的图象交于点A(?1,a),B(b ,-1), x3. ·································· 2分 x

(2)∵EA=EB,A(?1,3),B(3,-1),

∴点E在直线y=x上.

∵△AEB的面积为8,AB?42, ∴EH?22.

∴△AEB 是等腰直角三角形.

∴E (3,3), ················································································· 5分

(3)分两种情况:

(ⅰ)当t?0时,则0?t?1; ························································· 6分 (ⅱ)当t?0时,则??t?0.

综上,当??t?0或0?t?1时,反比例函数G2的图象与直线l有两个公共点M,N,且·················································································· 7分 DM?DN?32. ·

24.解:(1)AB=AC+CD; ································································· 1分 (2)①AB=AC+CE; ······································································· 2分

证明:在线段AB上截取AH=AC,连接EH. ∵AD平分∠BAC ∴?1??2. 5454ECDAHFB

又∵AE=AE,

∴△ACE≌△AHE.

∴CE=HE. ······································································· 3分 EF垂直平分BC,

∴CE=BE. ············································································ 4分 又∠ABE=60°,

∴△EHB是等边三角形. ∴BH=HE.

∴AB=AH+HB=AC+CE. ······················································ 5分②在线段AB上截取AH=AC,连接EH,作EM⊥AB于点M. 易证△ACE≌△AHE, ∴CE=HE. ∴△EHB是等腰三角形. ∴HM=BM. ∴AC+AB=AH+AB =AM-HM+AM+MB =2AM. ∵AC?AB?3AE, ∴AM?[来源:Zxxk.Com]

CDF3AE. 2E在Rt△AEM中,cos?EAM?∴∠EAB=30°.

AM3, ?AE2AHMB∴∠CAB=2∠EAB=60°. ························································ 7分

25.解:(1)①l3,l4; ············································································· 2分 ②xM?23; ··································································· 3分 3

(2)①如图,当直线PB与⊙A相切于点B时,此时点M的横坐标xM最大,

作PH⊥x轴于点H,

∴HM=xM?1,AM= xM?2, 在Rt△ABM和Rt△PHM中, tan?AMB?AB?PH,

BMHM∴BM=1HM=1(xM?1).

22222在Rt△ABM中, AM?AB?BM,

2∴(xM?2)?1?1(xM?1)2. 4解得xM?3?43. 343. 3∴点M的横坐标xM最大时,xM?3?∴k?

3?3. ······································································· 6分 4②当P点的位置发生变化时,AE的长度不发生改变. 如图,⊙A的两条“x关联直线”与⊙A相切于点C,D, ∴PC=PD. 又∵AC=AD ∴AP垂直平分BC.

在Rt△ADF和Rt△ADP中,

sin?ADF?sin?APD,

∴AF?AP?AD2

在Rt△AEF和Rt△AOP中,

cos?EAF?AFAO, ?AEAP∴AF?AP?AE?AO ∴AD2?AE?AO ∴AE?1.

2即当P点的位置发生变化时,AE的长度不发生改变.····································· 8分


北京西城区2024年中考二模数学试题及答案doc-2024年北京.doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:2024江苏省第六届“万人学法”知识竞赛题库答案大全

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219