因式分解分类练习(提供因式法、平方差公式法、完全平方公式法)

2025-04-29

因式分解练习题(提取公因式)

专项训练一:确定下列各多项式的公因式。

1、ay?ax 2、3mx?6my 3、4a2?10ab 4、15a2?5a 5、x2y?xy2 6、12xyz?9x2y2 28、a2b?5ab?9b 9、?x2?xy?xz 10、?24x2y?12xy2?28y3

11、?3ma3?6ma2?12ma 12、56x3yz?14x2y2z?21xy2z2

13、15x3y2?5x2y?20x2y3 14、?16x4?32x3?56x2 7、m?x?y??n?x?y? 8、x?m?n??y?m?n? 9、abc(m?n)3?ab(m?n) 10、12x(a?b)2?9m(b?a)3 专项训练二:利用乘法分配律的逆运算填空。

1、2?R?2?r?____(R?r) 2、2?R?2?r?2?(______)

3、112gt21?2gt22?___(t21?t22) 4、15a2?25ab2?5a(_______)

专项训练三、在下列各式左边的括号前填上“+”或“-”,使等式成立。 1、x?y?__(x?y) 2、b?a?__(a?b) 3、?z?y?__(y?z) 4、?y?x?2?___(x?y)2 5、(y?x)3?__(x?y)3 6、?(x?y)4?__(y?x)4 7、(a?b)2n?___(b?a)2n(n为自然数) 8、(a?b)2n?1?___(b?a)2n?1(n为自然数)

9、?1?x?(2?y)?___(1?x)(y?2) 10、?1?x?(2?y)?___(x?1)(y?2) 11、(a?b)2(b?a)?___(a?b)3 12、(a?b)2(b?a)4?___(a?b)6 专项训练四、把下列各式分解因式。

1、nx?ny 2、a2?ab 3、4x3?6x2 4、8m2n?2mn

5、25x2y3?15x2y2 6、12xyz?9x2y2 7、3a2y?3ay?6y

专项训练五:把下列各式分解因式。1、x(a?b)?y(a?b)

3、6q(p?q)?4p(p?q)

5、a(a?b)?(a?b)2

7、(2a?b)(2a?3b)?3a(2a?b)

9、p(x?y)?q(y?x)

11、(a?b)(a?b)?(b?a)

13、3(x?1)3y?(1?x)3z

- 1 -

2、5x(x?y)?2y(x?y) 4、(m?n)(P?q)?(m?n)(p?q) 6、x(x?y)2?y(x?y) 8、x(x?y)(x?y)?x(x?y)2 10、m(a?3)?2(3?a) 12、a(x?a)?b(a?x)?c(x?a) 14、?ab(a?b)2?a(b?a)2

15、mx(a?b)?nx(b?a) 16、(a?2b)(2a?3b)?5a(2b?a)(3b?2a)

17、(3a?b)(3a?b)?(a?b)(b?3a) 18、a(x?y)?b(y?x)

19、x(x?y)2?2(y?x)3?(y?x)2 20、(x?a)3(x?b)?(a?x)2(b?x)

21、(y?x)2?x(x?y)3?(y?x)4 22、3(2a?3b)2n?1?(3b?2a)2n(a?b)(n为自然数)

专项训练六、利用因式分解计算。

1、7.6?199.8?4.3?199.8?1.9?199.8 2、2.186?1.237?1.237?1.186

3、(?3)21?(?3)20?6?319 4、1984?20032003?2003?19841984

专项训练七:利用因式分解证明下列各题。 1、求证:当n为整数时,n2?n必能被2整除。

- 2 -

2

2、证明:一个三位数的百位上数字与个位上数字交换位置,则所得的三位数与原数之差能被99整除。

3、证明:32002?4?32001?10?32000能被7整除。

专项训练八:利用因式分解解答列各题。 1、已知a+b=13,ab=40, 求2a2b+2ab2的值。

212、已知a?b?,ab?,求a3b+2a2b2+ab3的值。

32

因式分解(公式法)

专题训练一:利用平方差公式分解因式 题型(一):把下列各式分解因式

1、x2?4 2、9?y2 3、1?a2 4、x3?16x 5、3ax2?3ay4 6、x2(2x?5)?4(5?2x)

7、x3?4xy2 8、32x3y4?2x3 9、ma4?16mb4

4、4x2?y2 5、1?25b2 6、x2y2?z2

7、419m2?0.01b2 8、a2?9x2 9、36?m2n2

10、4x2?9y2 11、0.81a2?16b2 12、25p2?49q2

13、a2x4?b2y2 14、x4?1

15、16a4?b4 16、181a4?16b4m4

题型(二):把下列各式分解因式

1、(x?p)2?(x?q)2 2、 (3m?2n)2?(m?n)2

3、16(a?b)2?9(a?b)2 4、9(x?y)2?4(x?y)2

5、(a?b?c)2?(a?b?c)2 6、4a2?(b?c)2

题型(三):把下列各式分解因式

1、x5?x3 2、4ax2?ay2 3、2ab3?2ab

10、?8a(a?1)2?2a3 11、?ax4?16a

题型(四):利用因式分解解答下列各题

1、证明:两个连续奇数的平方差是8的倍数。

2、计算

⑴7582?2582 ⑵4292?1712 ⑷(1?122)(1?111132)(1?42)???(1?92)(1?102)

专题训练二:利用完全平方公式分解因式 题型(一):把下列各式分解因式

- 3 -

、16mx(a?b)2?9mx(a?b)2 ⑶3.52?9?2.52?4 12

1、x2?2x?1 2、4a2?4a?1 3、 1?6y?9y2

1?m?m24、4 5、 x2?2x?1 6、a2?8a?16

7、1?4t?4t2 8、m2?14m?49 9、b2?22b?121

10、y2?y?14 11、25m2?80m?64 12、4a2?36a?81

、4p2?20pq?25q2 14、x2134?xy?y2 15、4x2?y2?4xy

题型(二):把下列各式分解因式

1、(x?y)2?6(x?y)?9 2、a2?2a(b?c)?(b?c)2

3、4?12(x?y)?9(x?y)2 4、(m?n)2?4m(m?n)?4m2

5、(x?y)?4(x?y?1) 6、(a?1)2?4a(a?1)?4a2

题型(三):把下列各式分解因式

1、2xy?x2?y2 2、4xy2?4x2y?y3 3、?a?2a2?a3

题型(四):把下列各式分解因式

1、1x2?2xy?2y2 2、x4?25x2y2?10x32y

3、ax2?2a2x?a3 4、(x2?y2)2?4x2y2

5、(a2?ab)2?(3ab?4b2)2 6、(x?y)4?18(x?y)2?81

7、(a2?1)2?4a(a2?1)?4a2 8、a4?2a2(b?c)2?(b?c)4

9、x4?8x2y2?16y4 10、(a?b)2?8(a2?b2)?16(a?b)2

题型(五):利用因式分解解答下列各题

1、已知: x?12,y?8,求代数式112x2?xy?2y2的值。

2、已知a?b?2,ab?32,求代数式a3b+ab3-2a2b2的值。

3、已知:a、b、c为△ABC的三边,且a2?b2?c2?ab?bc?ac?0, 判断三角形的形状,并说明理由。

- 4 -

因式分解习题(三)

十字相乘法分解因式

例1、分解因式:x?7x?6

解:原式=x2?[(?1)?(?6)]x?(?1)(?6) 1 -1

=(x?1)(x?6) 1 -6 (-1)+(-6)= -7

2 (1)对于二次项系数为1的二次三项式x2?(a?b)x?ab?(x?a)(x?b) 练习1、分解因式

方法的特征是“拆常数项,凑一次项”

(1)x2?14x?24 (2)a2?15a?36 当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号相同;

当常数项为负数时,把它分解为两个异号因数的积,其中绝对值较大的因数的符号与一次项练习2、分解因式

系数的符号相同.

(1)x2?x?2 (2)y2?2y?15 (2)对于二次项系数不是1的二次三项式

ax2?bx?c?a1a2x2?(a1c2?a2c1)x?c1c2?(a1x?c1)(a2x?c2) 它的特征是“拆两头,凑中间”

当二次项系数为负数时,先提出负号,使二次项系数为正数,然后再看常数项; (二)二次项系数不为1的二次三项式—— ax2?bx?c 常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号相同;

常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一条件:(1)a?a1a2 a1 c1

次项系数的符号相同

注意:用十字相乘法分解因式,还要注意避免以下两种错误出现:一是没有认真地验证交叉(2)c?c1c2 a2 c2 相乘的两个积的和是否等于一次项系数;二是由十字相乘写出的因式漏写字母. 二、典型例题 (3)b?a1c2?a2c1 b?a1c2?a2c1

例5、分解因式:x2?5x?6

分解结果:ax2?bx?c=(a1x?c1)(a2x?c2) 分析:将6分成两个数相乘,且这两个数的和要等于5。

由于6=2×3=(-2)×(-3)=1×6=(-1)×(-6),从中可以发现只有2×3的分解适合,即

例2、分解因式:3x2?11x?10

2+3=5。 分析:

1 -2 1 2

3 -5 解:x2?5x?6=x2?(2?3)x?2?3 1 3

(-6)+(-5)= -11 解:3x2?11x?10=(x?2)(3x?5)

=(x?2)(x?3) 1×2+1×3=5

练习3、分解因式:

用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要等于一2次项的系数。

(1)5x?7x?6 (2)3x2?7x?2

- 5 -

(3)x2?4x?5 (3)x2?10x?24

(3)10x2?17x?3 (4)?6y2?11y?10

(三)多字母的二次多项式

例3、分解因式:a2?8ab?128b2 分析:将b看成常数,把原多项式看成关于a的二次三项式,利用十字相乘法进行分解。 1 8b 1 -16b 8b+(-16b)= -8b

解:a2?8ab?12b82=a2?[8b?(?16b)]a?8b?(?16b) =(a?8b)(a?16b) 练习4、分解因式

(1)x2?3xy?2y2 (2)m2?6mn?8n2 (3)a2?ab?6b2

例4、2x2?7xy?6y2 例10、x2y2?3xy?2 1 -2y 把xy看作一个整体 1 -1 2 -3y 1 -2 (-3y)+(-4y)= -7y (-1)+(-2)= -3 解:原式=(x?2y)(2x?3y) 解:原式=(xy?1)(xy?2) 练习5、分解因式:

(1)15x2?7xy?4y2 (2)a2x2?6ax?8

综合练习10、

(1)8x6?7x3?1 (2)12x2?11xy?15y2

(3)(x?y)2?3(x?y)?10 (4)(a?b)2?4a?4b?3

(5)x2y2?5x2y?6x2 (6)m2?4mn?4n2?3m?6n?2

(7)x2?4xy?4y2?2x?4y?3 (8)5(a?b)2?23(a2?b2)?10(a?b)2

(9)4x2?4xy?6x?3y?y2?10 (10)12(x?y)2?11(x2?y2)?2(x?y)2

思考:分解因式:abcx2?(a2b2?c2)x?abc

例5 分解因式:(x2?2x?3)(x2?2x?24)?90.

例6、已知x4?6x2?x?12有一个因式是x2?ax?4,求a值和这个多项式的其他因式.

课后练习 一、选择题

1.如果x2?px?q?(x?a)(x?b),那么p等于 ( )

A.ab B.a+b C.-ab D.-(a+b)

2.如果x2?(a?b)?x?5b?x2?x?30,则b为 ( )

A.5 B.-6 C.-5 D.6

- 6 -

3.多项式x?3x?a可分解为(x-5)(x-b),则a,b的值分别为 ( )

A.10和-2 B.-10和2 C.10和2 D.-10和-2 4.不能用十字相乘法分解的是 ( )

2(4)a?7ab?8b; (5)6a?5a?4a; (6)4a?37ab?9ab.

633643264224x?x?2 B.3x?10x?3x C.4x?x?2 D.A.5x2?6xy?8y2

5.分解结果等于(x+y-4)(2x+2y-5)的多项式是 ( )

A.2(x?y)2?13(x?y)?20 B.(2x?2y)2?13(x?y)?20 C.2(x?y)2?13(x?y)?20 D.2(x?y)2?9(x?y)?20 6.将下述多项式分解后,有相同因式x-1的多项式有 ( )

①x?7x?6; ②3x?2x?1; ③x?5x?6; ④4x?5x?9; ⑤15x?23x?8; ⑥x?11x?12 A.2个 B.3个 C.4个 D.5个 二、填空题

7.x?3x?10?__________.

8.m?5m?6?(m+a)(m+b). a=__________,b=__________. 9.2x?5x?3?(x-3)(__________).

210.x?____?2y?(x-y)(__________).

22222242222222215.把下列各式分解因式:

(1)(x2?3)2?4x2; (2)x2(x?2)2?9;

(3)(3x?2x?1)?(2x?3x?3); (4)(x?x)?17(x?x)?60;

(5)(x?2x)?7(x?2x)?8; (6)(2a?b)?14(2a?b)?48.

16.已知x+y=2,xy=a+4,x?y?26,求a的值.

3322222222222

十字相乘法分解因式(任璟编)

题型(一):把下列各式分解因式

⑴x2?5x?6 ⑵ x2?5x?6

11.a?2na?(_____)?(____?____)2. m212.当k=______时,多项式3x?7x?k有一个因式为(__________). 13.若x-y=6,xy?三、解答题

14.把下列各式分解因式:

173223,则代数式xy?2xy?xy的值为__________. 364224(1)x?7x?6; (2)x?5x?36; (3)4x?65xy?16y;

4242⑶x2?5x?6 ⑷x2?5x?6

- 7 -

⑸a2?7a?10 ⑹b2?8b?20

⑺a2b2?2ab?15 ⑻a4b2?3a2b?18 题型(四):把下列各式分解因式

⑴(x2?3x)2?2(x2?3x)?8 ⑵(x2?2x)(x2?2x?2)?3

题型(二):把下列各式分解因式

⑴a2?4ab?3b2

⑶a2?7ab?10b2 ⑸x2?2xy?15y2

⑺x2?4xy?21y2

题型(三):把下列各式分解因式

⑴(x?y)2?4(x?y)?12 ⑶(x?y)2?8(x?y)?20

⑸(x?y)2?9(x?y)?14

⑺(x?y)2?6(x?y)?16

⑵x2?3xy?10y2 ⑷x2?8xy?20y2 ⑹x2?5xy?6y2 ⑻x2?7xy?12y2 ⑵(x?y)2?5(x?y)?6 ⑷(x?y)2?3(x?y)?28⑹(x?y)2?5(x?y)?4 ⑻(x?y)2?7(x?y)?30⑶3x3?18x2y?48xy2 ⑷(x2?5x)2?2(x2?5x)?24

⑸(x2?2x)(x2?2x?7)?8 ⑹x4?5x2?4

⑺ x2y?3xy2?10y3 ⑻a2b2?7ab3?10b4

因式分解习题(四) 分组分解因式(任璟编)

练习:把下列各式分解因式,并说明运用了分组分解法中的什么方法.

(1)a2-ab+3b-3a; (2)x2-6xy+9y2-1; 解

(3)am-an-m2+n2; (4)2ab-a2-b2+c2.

- 8 -

第(1)题分组后,两组各提取公因式,两组之间继续提取公因式.

第(2)题把前三项分为一组,利用完全平方公式分解因式,再与第四项运用平方差公式 继续分解因式.

第(3)题把前两项分为一组,提取公因式,后两项分为一组,用平方差公式分解因式,然

(3) a4b-ab4; (4) x4y+2x3y2-x2y-2xy2; 后两组之间再提取公因式.

第(4)题把第一、二、三项分为一组,提出一个“-”号,利用完全平方公式分解因式 ,第四项与这一组再运用平方差公式分解因式.

把含有四项的多项式进行因式分解时,先根据所给的多项式的特点恰当分解,再运 用提公因式或分式法进行因式分解.在添括号时,要注意符号的变化.

这节课我们就来讨论应用所学过的各种因式分解的方法把一个多项式分解因式. 二、新课

例1 把am+bm+an-cm+bn-cn分解因式.

例2 把a4b+2a3b2-a2b-2ab2分解因式.

例3 把45m2-20ax2+20axy-5ay2分解因式.

三、课堂练习

把下列各式分解因式:

(1)a2+2ab+b2-ac-bc; (2)a2-2ab+b2-m2-2mn-n2;

(3)4a2+4a-4a2b+b+1; (4)ax2+16ay2-a-8axy;

五、作业

1.把下列各式分解因式:

(1)x3y-xy3; (2) 4x2-y2+2x-y;

(5) a4+a3+a+1;

(7)x2+x-(y2+y);

(9)x2?6x?7

- 9 -

(6)x3-8y3-x2-2xy-4y2; (8)ab(x2-y2)+xy(a2-b2). (10)x2?2xy?y2?2x?2y?3


因式分解分类练习(提供因式法、平方差公式法、完全平方公式法).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:西南交大网络教育交通运输专业线路基础离线作业(DOC)

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219