材料阅读题
?3??3,??2.5???3,1、对于实数x,我们规定?x?表示不大于x的最大整数,例如?1.2??1,
若??x?4??5,则x的取值可以是( ). ?10??A.40 B.45 C.51 D.56
2、若定义:f(a,b)?(?a,b), g(m,n)?(m,?n),例如f(1,2)?(?1,2),
g(?4,?5)?(?4,5),则g(f(2,?3))=( )
A.(2,?3)
B.(?2,3)
C.(2,3)
2
D.(?2,?3)
3、对于实数a、b,定义一种运算“?”为:a?b=a+ab﹣2,有下列命题:
①1?3=2;
②方程x?1=0的根为:x1=﹣2,x2=1; ③不等式组
的解集为:﹣1<x<4;
④点(,)在函数y=x?(﹣1)的图象上. 其中正确的是( )
A.①②③④ B.①③ C.①②③ D.③④ 4、对于点A(x1,y1),B(x2,y2),定义一种运算:A⊕B=(x1+x2)+(y1+y2).例如,A(﹣5,4),B(2,﹣3),A⊕B=(﹣5+2)+(4﹣3)=﹣2.若互不重合的四点C,D,E,F,满足C⊕D=D⊕E=E⊕F=F⊕D,则C,D,E,F四点( ) A. 在同一条直线上 B. 在同一条抛物线上 C. 在同一反比例函数图象上 D. 是同一个正方形的四个顶点 5、已知f?x??1,则
x??x?1?f?1??f?2??……
11?
1??1?1?1?211?
2??2?1?2?3?f?n??14,求n的值。 15已知f?1??f?2??f?3??
1
2??a?ab(a?b),6、 (2013年临沂) 对于实数a,b,定义运算“﹡”:a﹡b=?例如4﹡2,因为2??ab?b(a?b).4>2,所以4﹡2?4?4?2?8.若x1,x2是一元二次方程x?5x?6?0的两个根,则x1﹡
22x2=
b3
8、定义一种新的运算a﹠b=a,如2﹠3=2=8,那么请试求(3﹠2)﹠2= .
9、我们规定:将一个平面图形分成面积相等的两部分的直线叫做该平面图形的“面线”,“面线”被这个平面图形截得的线段叫做该图形的“面径”(例如圆的直径就是它的“面径”).已知等边三角形的边长为2,则它的“面径”长可以是 ,(或介于和之间的任意两个实数) (写出1个即可). 10、若正整数n使得在计算n+(n+1)+(n+2)的过程中,个数位上均不产生进为现象,则称n为“本位数”,例如2和30是 “本位数”,而5和91不是“本位数”.现从所有大于0且小于100的“本位数”中,随机抽取一个数,抽到偶数的概率为____.
12、选取二次三项式ax?bx?c ?a?0?中的两项,配成完全平方式的过程叫配方。例如
2①选取二次项和一次项配方:x2?4x?2??x?2??2; ②选取二次项和常数项配方:x?4x?2?x?2 或x③选取一次项和常数项配方:x2222????22?4?x,
?4x?2??x?2???4?22?x ?4x?2??2x?2??x
2222根据上述材料,解决下面问题:
(1)写出x2?8x?4的两种不同形式的配方; (2)已知x?y?xy?3y?3?0,求xy的值。
13、人教版教科书对分式方程验根的归纳如下:“解分式方程时,去分母后所得整式方程的解有可能使原分式方程中的分母为0,因此应如下检验:将整式方程的解代入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解.”
请你根据对这段话的理解,解决下面问题:已知关于x的方程x+kx+6=0的一个根是m. (1)求m和k的值;
2
(2)求方程x+kx+6=0的另一个根.
2
22﹣=0无解,方程
2
14、阅读材料:求1+2+2+2+2+…+2的值.
23420122013
解:设S=1+2+2+2+2+…+2+2,将等式两边同时乘以2得:
234520132014
2S=2+2+2+2+2+…+2+2
2014
将下式减去上式得2S﹣S=2﹣1
2014
即S=2﹣1
23420132014
即1+2+2+2+2+…+2=2﹣1 请你仿照此法计算:
23410
(1)1+2+2+2+2+…+2
234n
(2)1+3+3+3+3+…+3(其中n为正整数).
15、定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.
(1)如果[a]=﹣2,那么a的取值范围是 ﹣2≤a<﹣1 . (2)如果[
]=3,求满足条件的所有正整数x.
2342013
16、定义新运算:对于任意实数a,b,都有a⊕b=a(a-b)+1,等式右边是通常的加法、 减法及乘法运算,比如: 2⊕5=2?(2-5)+1 =2?(-3)+1 =-6+1
=-5
(1)求(-2)⊕3的值
(2)若3⊕x的值小于13,求x的取值范围,并在图13所示的数轴上表示出来.
17、阅读材料:若a,b都是非负实数,则a+b≥.当且仅当a=b时,“=”成立. 证明:∵()≥0,∴a﹣+b≥0. ∴a+b≥.当且仅当a=b时,“=”成立. 举例应用:已知x>0,求函数y=2x+的最小值. 18、阅读材料:
小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=
2
(1+).善于思考的小明进行了以下探索:
222
设a+b=(m+n)(其中a、b、m、n均为整数),则有a+b=m+2n+2mn.
22
∴a=m+2n,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法. 请你仿照小明的方法探索并解决下列问题: (1)当a、b、m、n均为正整数时,若a+b
2
2
2
=,用含m、n的式子分别表示
a、b,得:a= m+3n ,b= 2mn ;
(2)利用所探索的结论,找一组正整数a、b、m、n填空: 4 + 2
2
); (3)若a+4
=
,且a、m、n均为正整数,求a的值?
=( 1 + 1
3
19、阅读理解: 如图1,在四边形ABCD的边AB上任取一点E(点E不与点A、点B重合),分别连接ED,EC,可以把四边形ABCD分成三个三角形,如果其中有两个三角形相似,我们就把E叫做四边形ABCD的边AB上的相似点;如果这三个三角形都相似,我们就把E叫做四边形ABCD的边AB上的强相似点.解决问题:
(1)如图1,∠A=∠B=∠DEC=55°,试判断点E是否是四边形ABCD的边AB上的相似点,并说明理由;
(2)如图2,在矩形ABCD中,AB=5,BC=2,且A,B,C,D四点均在正方形网格(网格中每个小正方形的边长为1)的格点(即每个小正方形的顶点)上,试在图2中画出矩形ABCD的边AB上的一个强相似点E; 拓展探究: