数学知识在初中美术教学中的运用探究(2)

2025-04-26


  1.毕达哥拉斯学派第一次提出了“美是和谐与比例”的观点,认为宇宙的和谐是由数决定的。毕达哥拉斯说:“一切立体图形中,最美的是球形,一切平面图形中最美的是圆形。”因为这两种形体在各个方向上都是对称的。数学形式和结构的对称性、数学命题关系中的对偶性、数学方法中的对偶原理方法都是对称美的自然表现。此外,像正多边形、正多面体、旋转体和圆锥曲线等都给人以完善、对称的美感。 
  2.数学美学方法的特点:直觉性,审美直觉是数学直觉中的一种重要类型;情感性,数学美学方法的运用是建立在审美主体的数学美感之上的;选择性,数学美学方法是自觉地依据美学的考虑来做出选择的方法,这种选择性是导致数学发现发明的指路灯,因此,它又使数学美学方法具有创造性。这些方法同样在美术教学中得到充分利用。 
  美感尽管表现为主观的,但它最终是来源于活动实践,数学中丰富的美的形式和美的因素(简称为美因)是美感产生的客观基础。 
  (二)审美教育的特征 
  1.和谐性:“和谐”是美学的一条重要的原理。无论是数学教学,还是美术教学,都是要理解的特征。 
  2.形象性:美育是一种形象性的教育,它总是通过审美对象的鲜明形象来诱发和感染教育者的。数学中直观教具、精美图形以及数形转化的方法都能产生审美教育中的形象陛。 
  3.自由性:美育给人以自由感,人对客观事物的感受只有进入自由境界,才能产生美感,因此,在审美教育中,要注意学生心理和生理的发展规律,善于引导和启发。 
  4.鲜明性:审美教育伴随着情感的激动,使受教育者不知不觉地在心灵中留下鲜明的印象,有时,即使知识被遗忘,而那触动情感的形象,却终生难忘。 (三)罗杰斯认为,当学生自己选择学习方面,参与发现自己的学习资源,阐述自己的问题,决定自己的行动路线,自己承担选择的后果时,就能在最大程度上从事意义学习。 
  瑞士心理学家皮亚杰(J.Piaget)认为,能力的发展是以学生自身的实践活动为中介实现主动建构的。只有通过学生的积极参与,通过学生操作、演示、讨论、交流等多种方式的获得活动,才能形成一种生动活泼的发展局面。通过实践得到的知识、能力、方法,才能长时间的保留而不遗忘,这对激活学生潜能和让学生可持续发展尤为重要。 
  三、利用数学知识辅助美术教学的策略 
  1.利用比例知识辅助学生的构图观 
  案例呈现:浙教版美术14册有一课是图表的制作,而数学13册也有图表这一课,当我汇集学生的图表作业后,发现问题1:某些学生图表作业从美术角度设计来说是新颖的,但数据很明显是不准的,甚至是随便估计出来的,导致整个图表是无效的。问题2:某些学生有数据的精确统计,但如何归类设计和选择恰当的表现形式是欠缺的。 
  案例分析:初一数学和美术教学当中都有关于图表的内容,不同的是在数学中侧重于数据的计算、统计与整理,而美术课是把这些数据直观成清晰可认、造型新颖的图表形象。但二者并不矛盾。如果美术课中单纯只重视构图设计,而不考虑数据统计的真实性和精确性,那只会养成学生闭门造车的坏习惯,不会学以致用,这样的结果也是与美育的目标相违背的;而数学光会计算,不知如何联系实际,只是美观实用也是不行的。把二者结合起来一定能够充分发展学生的综合能力,相辅相成,达到事半功倍的效果。 
  2.利用几何图形概括形象,培养学生想象力 
  案例:教学“轴对称图形”时,可积极寻找教材与美术学科的结合点,让学生在优美的旋律中欣赏美丽的对称图案,在分类中感知轴对称图形,从而引导学生进入新知探索之中。这样让学生对数学产生美感、亲近感,从而产生兴趣。在学生理解了轴对称、对称轴的概念之后,引导学生应用轴对称的知识,设计制作贺年卡,极大地调动了学生学习的积极性、主动性和创造性,同时丰富了课堂教学的内涵。对称性是数学美的最重要特征。由于现实世界中处处有对称,既有轴对称、中心对称和镜对称等等的空间对称,又有周期、节奏和旋律的时间对称,还有与时空坐标无关的更为复杂的对称。 

数学知识在初中美术教学中的运用探究(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:风险导向审计模式在公司内部应用初探

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219