0 引言
在同一幅图像中,如果存在低信噪比的小目标、点目标,不同目标的灰度值跨越很大,使得图像的分割算法变复杂[1-4]。如能有效增强图像中的信号强度,提高图像的对比度,则图像的分割变得简单,可以更容易地识别信号与背景。 本文基于数学形态学方法,利用膨胀、腐蚀、开、闭等基本形态变换运算的特点[5],讨论利用这些基本变换提取图像中的信号强度极值的原理,提出了基于形态基本变换的图像滤波、增强处理方法,该方法简单、直观;试验结果表明该方法的有效性。1 数学形态变换原理
根据数学形态学理论,对数字图像f (x )和结构元素B,有以下论述[6]: 设f 为一幅数字灰度图像,f : D f → T f ,D f Z2 ,T f ∈Z,Z2为二维离散空间。图像 f = f(x) 表示 x = (i, j)处的灰度,结构元素B为Z2上的一个有限子集,关于原点对称。在此基础上可定义对f 关于结构元素B 的形态腐蚀运算,记为ξB(c) B ( f ) 图1
膨胀、腐蚀形态变换是极值替换运算,是在结构元素范围内按灰度极大值、极小值进行替换:取结构元素内像素的灰度最大、最小值,将该范围内所有像素灰度替换为该极大、极小值;对膨胀而言,是极大值替换,对腐蚀而言,是极小值替换。从上述运算定义来看,其实质是一种极值滤波运算,它们的组合运算开、闭运算也必然具有滤波功效。