基于数据挖掘技术的现代物流管理(2)

2025-04-28


  数据挖掘技术。这是整个系统的难点和重点,主要涉及模式模型和挖掘算法。目前,己形成了多种数据挖掘方法,如分类知识发现、数据总结、数据聚类、关联规则发现、序列模式发现、依赖关系或依赖模型发现、异常发现、趋势预测等。各种方法均有它一定的优点,也有它的不足。几种技术并不是单一的使用,而是根据实际情况综合的加以应用。现在一些流行的数据挖掘工具一般都包括了几种方法。如IBM公司Almaden研究中心开发的QUEST系统,SGI公司开发的MineSet系统都是多模式的挖掘工具。 
  数据分析工具。数据仓库虽然存有大量数据,但提供辅助决策的信息需要利用各种分析工具,如联机分析处理(OLAP)工具、统计分析和查询优化工具等。这些工具的性能对管理决策的效果有着重要的影响。目前已出现具有智能功能的强大的数据分析工具,这些分析工具不仅能在系统运行时采集和处理数据,同时也支持对其他业务系统的数据进行采集。 
  数据挖掘技术在物流管理中的应用 
  信息是企业最重要的有效资源,最大限度地提高信息的利用率是企业经营成败的关键。沃尔玛公司是现代物流管理在商业运用最好的例证。沃尔玛拥有由信息系统、供应商伙伴关系、可靠的运输及先进的全自动配送中心组成的完整物流配送系统,可以及时保证货品从仓库运送到任何一家商店的时间不超过48小时,相对于其他同业商店平均两周补货一次来说,沃尔玛可保证分店货架平均一周补两次。通过迅速的信息传递与先进的电脑跟踪系统,沃尔玛可以在全美国范围内快速地输送货物,使各分店即使只维持极少存货也能保持正常销售,从而大大节省了存贮空间和存货成本。沃尔玛的物流高效率是因为他们运用了最先进的数据挖掘技术,据统计,沃尔玛公司专门从事物流信息系统工作的科技人员有1200多人,每年投入信息的资金约6亿美元。 
  利用数据仓库和数据挖掘技术,沃尔玛对商品进行市场分组分析,即分析哪些商品顾客最有希望一起购买。沃尔玛数据仓库里集中了各个商店一年多的详细原始交易数据。在这些原始交易数据的基础上,沃尔玛利用自动数据挖掘工具对这些数据进行分析和挖掘。沃尔玛公司近年来用大容量的数据仓库来进行数据挖掘和客户关系管理,对其3000多家零售店的8万种产品时刻把握住利润最高的商品品种和数量。他们在从事由数据变信息,由信息变知识的知识挖掘工作,通过全球全集团、全方位、全过程、全天候的自动数据采集技术,改变传统的依靠假设和推断来确定订货的方式,从数据的不断积累过程中以小时为单位动态地运行决策模型,导出数亿个品种的最佳订货量与最佳商品组合分配,降价以及商品陈列等。 
  数据挖掘技术在银行、生物工程、市场营销等领域有许多成功的应用案例。数据挖掘将是未来对企业产生深远影响的关键技术,并且还将成为未来投资的焦点。随着集成化物流管理信息系统的建立,以及网络技术、EDI、人工智能、条形码与POS等各种先进技术的应用,物流信息的商品化、物流信息收集的数据库化和代码、物流信息处理的电子化和计算机化,把挖掘到的规则与物流管理各方面有机地结合,就能极大地提高企业的竞争力。 
  随着信息时代的数据量的剧增,深化物流信息管理最有效的方法是在其中引进数据挖掘技术,数据挖掘可以从数据中发现趋势和模式,人们通过数据挖掘得到的回报就是将这些新发现的知识转变为经营上的成果,如增加顾客购买欲望,减少信用卡欺诈的数量等。充分合理的利用数据挖掘技术,可以进行市场预测和分析,这必将为正确的决策奠定坚实的基础。迈向21世纪的物流管理技术,不仅是企业战略的“商务物流”,而且是向整个社会实现物资供给的“社会物流”,进而在全球化市场的激烈竞争中形成多元化网络所必需的“全球物流”。 
  参考文献:
  1.蔡少华。网络空间物流信息系统的分析与探讨[J].地球信息科学,2002(3) 

下一篇:增值税转型对企业财务的影响分析

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219