大学生创新创业训练计划项目结题报告
图4 D8-ADVANCE型转靶X射线衍射仪
2.2.3扫描电子显微镜(SEM)
扫描电子显微镜可以方便的得到所制备材料的形貌特征及结构特征,是材料研究的关键。在使用过程中,其利用多种信号转换,得到经电子束激发相应材料表面产生次级电子信号,利用这种电子信号来完成对材料的形貌的表征形成我们所看到的图像特征。对导电性较差的样品,为避免观测样品表面时,因积累电荷从而影响观测,通常需要喷涂一层重金属薄膜。
本论文采用美国FEI公司生产的QuantaFEG450型场发射扫描电子显微镜(Field-Emission Scanning Electron Microscopy, FE-SEM)对样品进行表面形貌和结构的表征,主要测试参数为:电子枪和样品的距离10 mm,加速电压为30 kV,电流为10μA。
2.2.4石墨烯等二维超薄结构纳米功能材料的制备
近十年来,石墨烯因其独特的物理化学特性成为材料界最为活跃的研究主题,在能量转换与存储、柔性透明显示、复合材料、传感器、集成电路等领域表现出十分诱人的应用前景。理论和实验结果表明,石墨烯的功函数可以通过原子分子掺杂和气体分子的吸附进行有效调控。基于这一点,在本项目中,我们提出利用石墨烯作为基本功能单元制备新一代的分子驱动能量转换及自供电传感器件,使器件能感受到环境中化学分子状态的改变而输出电信号。
采用化学气相沉积方法以及Langmuir-Blodget方法制备了大面积(氧化)石墨烯材料。化学气相沉积法是制备石墨烯常用的方法,该方法的优点在于易实现石墨烯的大面积合成,常以铜、镍、铂等金属为衬底,通过渗碳冷却、表面催化等工艺制备得到大面积连续的石墨烯薄膜。实验中,以C2H4为碳源,H2为载气,以Ni和Cu为催化剂,生长温度控制在800-1000℃,通过调控对开式管式炉中的碳源、压强、温度以及生长时间,控制石墨烯的生长厚度。利用化学气相沉积
6
大学生创新创业训练计划项目结题报告
方法,获得了表面连续的大面积石墨烯材料。
为了进一步探索并优化化学气相沉积实验过程,我们采用化学气相沉积方法制备了大面积二维超薄半导体纳米材料,并以此二维超薄结构的半导体纳米材料制备类似的化学分子驱动自供电传感器件,借此与高质量石墨烯材料的制备方法和器件制作工艺类比,优化化学分子驱动能量转换及自供电传感器件性能,并深入探究器件工作机理。采用化学气相沉积方法,制备了具有二维超薄结构的氧化锌以及二硫化钼半导体纳米材料。探索了具有较大比表面积的二维超薄结构的半导体纳米材料最优化生长工艺;研究了不同升温速度、生长温度、生长时间、掺杂元素、反应气体及载气比例以及流量等条件,制备的大面积二维超薄结构半导体纳米材料的成分、结构、形貌以及光、电、机械等性能;实现了在不同表面状态的硅、二氧化硅以及不同晶体取向的蓝宝石衬底上生长高质量大面积二维超薄结构半导体纳米材料。
在实验研究上,以化学气相沉积法生长的大片石墨烯和化学剥离的氧化石墨烯(或还原氧化石墨烯)为实验对象,综合利用带环境气氛的Kelvin探针显微镜(KPFM)、聚焦离子束刻蚀(FIB)等材料领域先进样品表征、加工手段开展研究;归纳分析化学分子接触时石墨烯功函数变化的微观机制与器件的宏观行为,为基于功函数调控的微纳能量转换器件的材料、器件设计及性能优化打下基础。通过研究生长条件及复合工艺,对石墨烯材料以及二维超薄结构半导体纳米材料结构、成分以及形貌、光学和电学等性能,获得了控制大面积二维超薄结构纳米材料的最优化生长工艺。
2.2.5基于二维超薄结构纳米材料的化学分子驱动自供电传感器件制作
以化学气相沉积制备的大面积石墨烯材料和Langmuir-Blodget方法制备的大面积氧化石墨烯薄膜为功能单元,制作化学分子驱动的自供电传感器件。
基本器件制备工艺流程如图5所示:1)选择CVD生长的大片单晶石墨烯,转移到Si/SiO2衬底上。综合拉曼、透射电镜、X射线衍射仪、半导体参数分析仪等手段表征所制备的石墨烯的微观结构及物理性质;2)用铝箔做掩膜遮住中间部分石墨烯,用电子束蒸发法在石墨烯两端镀电极,用导线将电极引出以备测试; 3)用铝箔做掩模,遮挡一半石墨烯,通过低压气相沉积法在器件表面旋涂一层派瑞林(Parylene C) 覆盖另一半石墨烯。
7
大学生创新创业训练计划项目结题报告
图5石墨烯化学传感器件制作的工艺路线图 (a) 在铜上生长的石墨烯;(b) 将石墨烯转移到Si/SiO2衬底上;(c)用铝箔做掩膜覆盖石墨烯中间部分;(d)用铝箔做掩膜蒸镀两端电极;(e)引出两侧电极,用铝箔做掩膜,沉积parylene C;(f)去掉
掩膜得到所需器件。
经外引导线,获得了以大面积石墨烯为功能单元的聚合物半遮盖式化学分子驱动自供电传感器件。此外,选取了具有较高表面积的氧化锌和二硫化钼等二维超薄结构半导体纳米片材料,制作大面积二维超薄结构纳米材料的化学分子驱动自供电传感器件。通过设计掩膜版的位置和大小,镀制电极,涂覆半遮盖式聚合物薄膜等步骤,制备了化学分子驱动自供电传感器件。
图6自供电传感器的结构图
3 结果与讨论
3.1超薄二维半导体纳米材料(石墨烯)基本电学性能研究
化学分子驱动自供电传感器件的性能评价主要涉及对其基本电学性能以及在化学有机溶液作用下输出电学性能的测试。基于此,我们首先测试了大面积石
8
大学生创新创业训练计划项目结题报告
墨烯基化学分子驱动自供电传感器件的基本电学性能:包括石墨烯化学分子驱动自供电传感器件的漏电流行为,以此评价器件封装完好性以及相关介质层的绝缘性能等;在此基础之上,通过测试石墨烯化学分子驱动自供电传感器件的伏安特性曲线,获得了石墨烯化学分子驱动自供电传感器件的工作特性以及电极接触类型等关键器件参数,如图7(a)是超薄二维半导体纳米材料(石墨烯)的伏安特性曲线;最后,在P型硅/二氧化硅介质层衬底的作用,通过调控背底栅极电压,测试了石墨烯化学分子驱动自供电传感器件的转移特性曲线,测试了器件的半导体类型和栅极电压的调控作用等器件参数,图7(b)是栅压对石墨烯伏安特性曲线的调控作用。作为对比,对基于大面积二维结构超薄纳米材料的化学分子驱动自供电传感器件进行了类似的基本电学性能测试。
(a) (b)
图7氧化石墨烯自供电传感器件的电学性能;(a)伏安特性曲线;(b)背底栅
极电压对其伏安特性曲线的调控作用
3.2 化学分子驱动能量转换器件性能测试
在获得化学分子驱动自供电传感器件基本电学性能的基础之上,测试了不同化学有机溶液作用下,大面积石墨烯和二维结构超薄纳米材料的化学分子驱动自供电传感器件的输出电学性能。首先测试了无外加电压激励作用下,化学分子驱动自供电传感器件的漂移电流以及电压随时间的变化规律,获得了能量转化器件的背景噪音以及稳定性等关键器件指标,图8(a)所示为传感器件的背景信号;随后,通过控制滴加化学有机溶液,测试了大面积二维结构超薄纳米材料化学分子驱动自供电传感器件的电流以及电压随时间变化规律,图8(b)所示,分析
9
大学生创新创业训练计划项目结题报告
了化学分子蒸发速度与器件电流电压信号的变化规律,建立了有机化学分子的极性、表面张力、润湿性等参数,与器件输出电学性能之间的内在联系机制,探究了化学分子在二维超薄半导体纳米片表面的吸附-脱附行为及器件能量传递机制。化学分子吸附在二维超薄半导体纳米片表面时,器件产生电信号,伴随载流子的转移,二维超薄半导体纳米片密封端和暴露端的费米能级达到平衡,电信号消失;要使器件持续工作,必须使化学分子处于不断吸附-脱附的动态循环中。
(a) (b)
(c) (d)
图8(a)GO传感器件的背景噪音信号;(b)滴加6微升二氯甲烷后的电流以及电压随时间变化曲线;(c)不同量丙酮的电流随时间的变化曲线;(d)源极和漏极反向连接后,滴加6微升二氯甲烷的电流以及电压随时间变化曲线 随后,研究了不同滴加量作用下,大面积二维结构超薄纳米材料的化学分子驱动自供电传感器件的电流以及电压随时间变化规律;图8(c)为在分别滴加
10