a1?a2?2(11111?),a3?a4?a5?64(??) a1a2a3a4a5(Ⅰ)求{an}的通项公式; (Ⅱ)设bn?(an?12),求数列{bn}的前n项和Tn。 an【解析】本题考查了数列通项、前n项和及方程与方程组的基础知识。 (1)设出公比根据条件列出关于
a1与d的方程求得a1与d,可求得数列的通项公式。
(2)由(1)中求得数列通项公式,可求出BN的通项公式,由其通项公式化可知其和可分成两个等比数列分别求和即可求得。 4.(2018江西理)22. (本小题满分14分) 证明以下命题:
(1) 对任一正整a,都存在整数b,c(b (2) 存在无穷多个互不相似的三角形△n,其边长an,bn,cn为正整数且an2,bn2,cn2成等差数列。 【解析】作为压轴题,考查数学综合分析问题的能力以及创新能力。 (1)考虑到结构要证a?c?2b,;类似勾股数进行拼凑。 证明:考虑到结构特征,取特值1,5,7满足等差数列,只需取b=5a,c=7a,对一切正整数a均能成立。 结合第一问的特征,将等差数列分解,通过一个可做多种结构分解的因式说明构成三角形,再证明互不相似,且无穷。 2222222证明:当an成等差数列,则bn, ,bn,cn?an?cn?bn222222222分解得:(bn?an)(bn?an)?(cn?bn)(cn?bn) 选取关于n的一个多项式,4n(n?1)做两种途径的分解 24n(n2?1)?(2n?2)(2n2?2n)?(2n2?2n)(2n?2)4n(n2?1)