七年级上册成都武侯实验中学数学期末试卷测试题(Word版 含解析)(2)

2025-11-15

⑵如图2,4﹣(﹣2)=6,6÷3×2=4,

即距离点M4个单位,距离点N2个单位的点就是所求的好点0;

∴数0所表示的点是【M,N】的好点;

⑶如图3,由题意得:PB=4t,AB=40+20=60,PA=60﹣4t,

点P走完所用的时间为:60÷4=15(秒),

当PB=2PA时,即4t=2(60﹣4t),t=10(秒),

当PA=2PB时,即2×4t=60﹣4t,t=5(秒),

∴当经过5秒或10秒时,P、A和B中恰有一个点为其余两点的好点;

故答案:(1)不是,是;(2)0;(3)5或10.

【分析】(1)根据定义发现:好点表示的数到【A,B】中,前面的点A是到后面的数B

的距离的2倍,从而得出结论;(2)点M到点N的距离为6,分三等分为份为2,根据定义得:好点所表示的数为0;(3)根据题意得:PB=4t,AB=40+20=60,PA=60﹣4t,由好点的定义可知:分两种情况列式:①PB=2PA;②PA=2PB;可以得出结论.

8.如图,两个形状、大小完全相同的含有30°、60°的直角三角板如图①放置,PA、PB与直线MN重合,且三角板PAC、三角板PBD均可绕点P逆时针旋转.

(1)直接写出∠DPC的度数.

(2)如图②,在图①基础上,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为5°/秒,同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为1°/秒,(当PA转到与PM重合时,两三角板都停止转动),在旋转过程中,当PC与PB重合时,求旋转的时间是多少?

(3)在(2)的条件下,PC、PB、PD三条射线中,当其中一条射线平分另两条射线的夹角时,请直接写出旋转的时间.

【答案】(1)解:∠DPC=180°-∠APC-∠BPD=180°-60°-30°=90°

故答案为:90°

(2)解:设旋转的时间是t秒时PC与PB重合,根据题意列方程得

5t-t=30+90

解得t=30

又∵180÷5=36秒

∴30<36

故旋转的时间是30秒时PC与PB重合

(3)解:设t秒时其中一条射线平分另两条射线的夹角,分三种情况:

①当PD平分∠BPC时,5t-t=90-30,解得t=15

②当PC平分∠BPC时,,解得t=26.25

③当PB平分∠DPC时,5t-t=90-2×30,解得t=37.5

故15秒或26.25秒或37.5秒时其中一条射线平分另两条射线的夹角

【解析】【分析】(1)易得∠DPC=180°-∠APC-∠BPD即可求(2)只需设旋转的时间是t 秒时PC与PB重合,列方程解可得(3)一条射线平分另两条射线的夹角,分三种情况:当PD平分∠BPC时;当PC平分∠BPC时;当PB平分∠DPC时,计算每种情况对应的时间

即可.

,平分 .

9.已知:平分,以为端点作射线

(2)若射线绕点旋转,,(为大于的钝角),,其他条件不变,在这个过程中,探究与之间的数量关系是否发生变

化,请补全图形并加以说明.

【答案】(1)解:∵射线平分、射线平分,

∴,,

=

=

=

= 82°

=41°

(2)解:与之间的数量关系发生变化,

如图,当在内部,

∵射线平分、射线平分,∴,

=

=

=

外部,

如图,当在

∴,

=

=

=

=

=

∴与之间的数量关系发生变化.

【解析】【分析】(1)根据角平分线的定义可得,,进而可得∠COE= ,即可得答案;(2)分别讨论OA在∠BOD内部和外部的情况,根据求得结果进行判断即可.

10.如图,已知OE平分,OF平分

(1)若是直角,,求的度数.

(2)若,,,请用x 的代数式来表示直接写出结果就行 .

【答案】(1)解:∵∠AOB是直角,∠BOC=60°,

∴∠AOC=∠AOB+∠BOC=90°+60°=150°,

∵OE平分∠AOC,

∴∠EOC=∠AOC=75°,

∵OF平分∠BOC,

∴∠COF=∠BOC=30°,

∴∠EOF=∠EOC?∠COF=75°?30°=45°;

(2)解:∵∠AOC=x°,OE平分∠AOC,

∴∠EOC=∠AOC= x°,

∵OF平分∠BOC,∠BOC=60°,

∴∠COF=∠BOC=30°,

∴∠EOF=∠EOC?∠COF=x°?30°,即y=x?30.

【解析】【分析】(1)由∠AOB是直角、∠BOC=60°知∠AOC=∠AOB+∠BOC=150°,根据OE平分∠AOC、OF平分∠BOC求得∠EOC、∠COF度数,由∠EOF=∠EOC?∠COF可

得答案;(2)由∠AOC=x°,、OE平分∠AOC 知∠EOC=∠AOC= x°,由OF平分∠BOC、∠BOC=60°知∠COF=∠BOC=30°,根据∠EOF=∠EOC?∠COF可得答案. 11.如图,点C在线段AB上,点M,N

分别是AC,BC的中点.

(1)若AC=8 cm,CB=6 cm,求线段MN的长;

(2)若C为线段AB上任一点,满足AC+CB=a,其他条件不变,你能猜想MN的长度吗?写出你的结论并说明理由;

(3)若点C在线段AB的延长线上,且满足AC-BC=b,M,N分别为AC,BC的中点,你能猜想MN的长度吗?请画出图.

【答案】(1)解:点M、N分别是AC 、BC的中点,

∴CM= AC=4cm,

CN= BC=3cm,

∴MN=CM+CN=4+3=7cm

所以线段MN的长为7cm

(2)解:MN的长度等于

a ,

根据图形和题意可得:

MN=MC+CN= AC+ BC= (AC+BC)= a

(3)解:MN的长度等于

b ,

根据图形和题意可得:

MN=MC-NC= AC- BC= (AC-BC)= b.

【解析】【分析】(1)据“点M、N 分别是AC,BC的中点”,先求出MC、CN的长度,再利用MN=CM+CN即可求出MN的长度即可.(2)据题意画出图形即可得出答案.(3)据题意画出图形即可得出答案.

12.如图①,△ABC中,BD平分∠ABC,且与△ABC的外角∠ACE的角平分线交于点D .

(1)若,,求∠D的度数;

(2)若把∠A截去,得到四边形MNCB,如图②,猜想∠D、∠M、∠N的关系,并说明理由.

【答案】(1)解:∵BD平分∠ABC,

∴∠CBD= ∠ABC= ×75°=37.5°,

∵CD平分△ABC 的外角,

∴∠DCA= (180°-∠ACB)= (180°-45°)=67.5°,

∴∠D=180°-∠DBC-∠DCB=180°-37.5°-67.5°-45°=30°.

(2)解:猜想:∠ D = ( ∠ M + ∠ N ? 180 ° ).

∵∠M+∠N+∠CBM+∠NCB=360°,

∴∠D=180°- ∠CBM-∠NCB- ∠NCE.

=180°- (360°-∠NCB-∠M-∠N)- ∠NCB- ∠NCE.

=180°-180°+ ∠NCB+ ∠M+ ∠N-∠NCB- ∠NCE.

= ∠M+ ∠N- ∠NCB- ∠NCE= ,

或写成

【解析】【分析】(1)根据角平分线的定义可得∠DBC=37.5°,根据邻补角定义以及角平分线定义求得∠DCA的度数为67.5°,最后根据三角形内角和定理即可求得∠D的度数;

(2)由四边形内角和与角平分线性质即可求解.

13.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度

沿直线AB向左运动(C在线段AP上,D在线段BP

上)

(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:

(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求的值.

(3)在(1)的条件下,若C、D 运动5秒后,恰好有,此时C点停止运动,D 点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN

的值不变;② 的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.

【答案】(1)解:由题意:BD=2PC

∵PD=2AC,

∴BD+PD=2(PC+AC),即PB=2AP.

∴点P在线段AB上的处

(2

)解:如图:

∵AQ-BQ=PQ,

∴AQ=PQ+BQ,

∵AQ=AP+PQ,

∴AP=BQ ,

∴PQ= AB ,

(3)解:

② 的值不变.

理由:如图,

当点C停止运动时,有CD= AB,

∴CM= AB,

∴PM=CM-CP= AB-5,

∵PD= AB-10,

∴PN= AB-10)= AB-5,

∴MN=PN-PM= AB,

当点C停止运动,D点继续运动时,MN的值不变,

所以

【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC 求得

PB=2AP,所以点P在线段AB上的处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ与AB 的关系;(3)当点C停止运动时,有

CD= AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM 与PN的值,所以MN=PN?PM= AB.

14.以直线AB上一点O为端点作射线OC,使∠BOC=60°,将一个直角三角形的直角顶点放在点O处.(注:∠

DOE=90°)

(1)如图1,若直角三角板DOE的一边OD放在射线OB上,则∠COE=________;

(2)如图2,将直角三角板DOE绕点O逆时针方向转动到某个位置,若OE恰好平分∠AOC,请说明OD所在射线是∠BOC的平分线;

(3)如图3,将三角板DOE绕点O逆时针转动到某个位置时,若恰好∠COD=∠AOE,求∠BOD的度数?

【答案】(1)30

(2)解:∵OE平分∠AOC,

∴∠COE=∠AOE=∠COA,

∵∠EOD=90°,

∴∠AOE+∠DOB=90°,∠COE+∠COD=90°,

∴∠COD=∠DOB,

∴OD所在射线是∠BOC的平分线

(3)解:设∠COD=x,则∠AOE=5x.

∵∠AOE+∠DOE+∠COD+∠BOC=180°,∠DOE=90°,∠BOC=60°,

∴5x+90°+x+60°=180°,

解得x=5°,

即∠COD=5°.

∴∠BOD=∠COD+∠BOC=5°+60°=65°

∴∠BOD的度数为65°

【解析】【解答】(1)∵∠BOE=∠COE+∠COB=90°,

又∵∠COB=60°,

∴∠COE=30°,

故答案为:30;

【分析】(1)根据角的和差,由∠COE=∠BOE-∠COB即可算出答案;

(2)根据角平分线的定义得出∠COE=∠AOE=∠COA,根据角的和差及平角的定义得出∠AOE+∠DOB=90°,∠COE+∠COD=90°,根据等角的余角相等得出∠COD=∠DOB,故 OD所在射线是∠BOC的平分线;

(3)设∠COD =x,则∠AOE=5x ,根据平角的定义得出5x+90°+x+60°=180°,求解算出x的值,从而求出∠COD的度数,进而根据∠BOD=∠COD+∠BOC 即可算出答案。

七年级上册成都武侯实验中学数学期末试卷测试题(Word版 含解析)(2).doc 将本文的Word文档下载到电脑 下载失败或者文档不完整,请联系客服人员解决!

下一篇:土地承包合同书样本范本

相关阅读
本类排行
× 游客快捷下载通道(下载后可以自由复制和排版)

下载本文档需要支付 7

支付方式:

开通VIP包月会员 特价:29元/月

注:下载文档有可能“只有目录或者内容不全”等情况,请下载之前注意辨别,如果您已付费且无法下载或内容有问题,请联系我们协助你处理。
微信:xuecool-com QQ:370150219